43 resultados para Electrical load forecasting
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.
Resumo:
Several European telecommunications regulatory agencies have recently introduced a fixed capacity charge (flat rate) to regulate access to the incumbent's network. The purpose of this paper is to show that the optimal capacity charge and the optimal access-minute charge analysed by Armstrong, Doyle, and Vickers (1996) have a similar structure and imply the same payment for the entrant. I extend the analysis tothe case where there is a competitor with market power. In this case, the optimalcapacity charge should be modified to avoid that the entrant cream-skims the market,fixing a longer or a shorter peak period than the optimal. Finally, I consider a multiproduct setting, where the effect of the product differentiation is exacerbated.
Resumo:
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.
Resumo:
Oxygen content is a very important factor influencing the electrical properties of YBa2Cu3Oy. In this work the electrical properties of laser deposited YBa2Cu3Oy thin films on LaAlO3(100), in the whole range 6 y 7, are studied. An electrical network model, which randomly assigns oxygen contents and R(T) characteristics to the different elements in the circuit according to an arbitrary distribution, is used to analyze several features in the measured R(T) characteristics as a function of oxygen homogeneity. The model takes into account both short-range and long-range oxygen inhomogeneities. Good agreement between estimated oxygen contents from x-ray diffraction data in our samples and the average oxygen contents used to reproduce their R(T) characteristics is found. The model points out that oxygen homogeneity is very important in order to get the best and reproducible properties, and for conduction and superconductivity analysis through the shape or derivatives of R(T) characteristics.
Resumo:
A broad class of dark energy models, which have been proposed in attempts at solving the cosmological constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as a scalar field picks up speed on its way to negative values of the potential. The negative potential energy eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we show that cross-correlations of the cosmic microwave background anisotropy and matter distribution, in combination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.
Resumo:
The fate of a small oral dose of protein given to overnight-starved rats was studied. After 3 h, 62 per cent of the protein amino acids had been absorbed. Most of the absorbed N went into the bloodstream through the portal in the form of amino acids, but urea and ammonia were also present. About one-quarter of all absorbed N was carried as lymph amino acids. The liver was able to take all portal free ammonia and a large proportion of portal amino acids, releasing urea. The hepatic N balance was negative, indicating active proteolysis and net loss of liver protein.
Resumo:
Several European telecommunications regulatory agencies have recently introduced a fixed capacity charge (flat rate) to regulate access to the incumbent's network. The purpose of this paper is to show that the optimal capacity charge and the optimal access-minute charge analysed by Armstrong, Doyle, and Vickers (1996) have a similar structure and imply the same payment for the entrant. I extend the analysis tothe case where there is a competitor with market power. In this case, the optimalcapacity charge should be modified to avoid that the entrant cream-skims the market,fixing a longer or a shorter peak period than the optimal. Finally, I consider a multiproduct setting, where the effect of the product differentiation is exacerbated.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Forecasting coal resources and reserves is critical for coal mine development. Thickness maps are commonly used for assessing coal resources and reserves; however they are limited for capturing coal splitting effects in thick and heterogeneous coal zones. As an alternative, three-dimensional geostatistical methods are used to populate facies distributionwithin a densely drilled heterogeneous coal zone in the As Pontes Basin (NWSpain). Coal distribution in this zone is mainly characterized by coal-dominated areas in the central parts of the basin interfingering with terrigenous-dominated alluvial fan zones at the margins. The three-dimensional models obtained are applied to forecast coal resources and reserves. Predictions using subsets of the entire dataset are also generated to understand the performance of methods under limited data constraints. Three-dimensional facies interpolation methods tend to overestimate coal resources and reserves due to interpolation smoothing. Facies simulation methods yield similar resource predictions than conventional thickness map approximations. Reserves predicted by facies simulation methods are mainly influenced by: a) the specific coal proportion threshold used to determine if a block can be recovered or not, and b) the capability of the modelling strategy to reproduce areal trends in coal proportions and splitting between coal-dominated and terrigenousdominated areas of the basin. Reserves predictions differ between the simulation methods, even with dense conditioning datasets. Simulation methods can be ranked according to the correlation of their outputs with predictions from the directly interpolated coal proportion maps: a) with low-density datasets sequential indicator simulation with trends yields the best correlation, b) with high-density datasets sequential indicator simulation with post-processing yields the best correlation, because the areal trends are provided implicitly by the dense conditioning data.
Resumo:
The optical and electrical recovery processes of the metastable state of the EL2 defect artificially created in n‐type GaAs by boron or oxygen implantation are analyzed at 80 K using optical isothermal transient spectroscopy. In both cases, we have found an inhibition of the electrical recovery and the existence of an optical recovery in the range 1.1-1.4 eV, competing with the photoquenching effect. The similar results obtained with both elements and the different behavior observed in comparison with the native EL2 defect has been related to the network damage produced by the implantation process. From the different behavior with the technological process, it can be deduced that the electrical and optical anomalies have a different origin. The electrical inhibition is due to the existence of an interaction between the EL2 defect and other implantation‐created defects. However, the optical recovery seems to be related to a change in the microscopic metastable state configuration involving the presence of vacancies