25 resultados para Edge detector
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
We present the concept of a sensitive and broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures, one approaches the standard quantum limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector, of overall size of 2 m, would reach spectral strain sensitivities of 2x10-23Hz-1/2 between 1000 and 3000 Hz.
Resumo:
L'entrevista amb l'escriptora cubano-americana Cristina García explora el tema de la identitat cubanoamericana i desvetlla la riquesa literària que sorgeix de la fusió de dues cultures, la cubana i la nord-americana, i com aquesta fusió innova la literatura nord-americana tradicional. En la seva novel·la, Dreaming in Cuban (1992), l'escriptora explora els efectes de la Revolució castrista des de la perspectiva de les dones cubanes que van quedar-se a l'illa, així com de les dones que emigraren als Estats Units. The conversation with Cuban-American writer Cristina García explores what it means to be Cuban-American, and reveals how to grow bicultural enriches mainstream American literature. In her novel Dreaming in Cuban (1992), the writer explores the effects of the Castro Revolution from the perspective of Cuban women who remained in Cuba, as well as from the experience of women who emigrated to the United States.
Resumo:
L'entrevista amb l'escriptora cubano-americana Cristina García explora el tema de la identitat cubanoamericana i desvetlla la riquesa literària que sorgeix de la fusió de dues cultures, la cubana i la nord-americana, i com aquesta fusió innova la literatura nord-americana tradicional. En la seva novel·la, Dreaming in Cuban (1992), l'escriptora explora els efectes de la Revolució castrista des de la perspectiva de les dones cubanes que van quedar-se a l'illa, així com de les dones que emigraren als Estats Units. The conversation with Cuban-American writer Cristina García explores what it means to be Cuban-American, and reveals how to grow bicultural enriches mainstream American literature. In her novel Dreaming in Cuban (1992), the writer explores the effects of the Castro Revolution from the perspective of Cuban women who remained in Cuba, as well as from the experience of women who emigrated to the United States.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
Resumo:
In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.
Resumo:
Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.
Resumo:
In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the presence (or absence) therein of long-duration monochromatic GW signals, as well as the eventual amplitude and frequency of the signals, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We develop practical procedures, together with a study of their statistical properties, which will provide us with useful information on the performance of each technique. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure spectral analysis, the most common approach.
Resumo:
In this paper we explore the use of non-linear transformations in order to improve the performance of an entropy based voice activity detector (VAD). The idea of using a non-linear transformation comes from some previous work done in speech linear prediction (LPC) field based in source separation techniques, where the score function was added into the classical equations in order to take into account the real distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if signal is clean, estimated entropy is essentially the same; but if signal is noisy transformed frames (with score function) are able to give different entropy if the frame is voiced against unvoiced ones. Experimental results show that this fact permits to detect voice activity under high noise, where simple entropy method fails.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.