25 resultados para Ecosystem functioning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of open educational resources (OERs) is becoming a strategic priority for governments and education institutions around the world, in response to funding cuts and rising costs in educational provision. In the United Kingdom, a government-sponsored Pilot Programme on Open Educational Recourses (JISC/HEA, 2009) was launched in 2009 with an initial budget of £5.7m. This paper reviews the key sustainability issues identified by the projects including the different approaches and models that have been adopted in order to sustain the continuing development and release of OER once funding has ended. The analysis also considers the challenges relating to the development and implementation of policies and processes for sustainable OER practice within institutions and among academics. The paper concludes by drawing on the experiences from the wider United Kingdom and international OER communities to develop a sustainable OER ecosystem model that can facilitate discussions on future development of OER initiatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main environmental variables determining the community structure and the functioning of Mediterranean shallow lentic ecosystems are described. These ecosystems are characterized by the unpredictability of their water inputs and the high variability in their water level and physical and chemical composition. Variations in flooding, salinity, and water turnover are determinant in species composition and nutrient dynamics. Taxon-based and size-based approaches to the study of the community structure of aquatic organisms that colonise these ecosystems are also compared. The conventional taxonomic approach, based on the determination of species composition, has been used for the identification of patterns in species richness, distribution and temporal dynamics, and for ecological requirements of species and their potential use as ecological indicators. This taxonbased approach has been compared with a size-based approach, where individuals are classified by their size. Size-based approach gives complementary information about community structure and dynamics, especially when communities are dominated by a single species. The use of size diversity combined with species diversity is suggested for a more complete understanding of community structuring in this type of ecosystem. Detailed examples of two Mediterranean shallow lentic ecosystems, the salt marshes of the Empordà wetlands and the Espolla temporary karstic pond, which differ in hydrology and water origin, are used to discuss the suitability of these different approaches

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Previous cross-sectional studies report that cognitive impairment is associated with poor psychosocial functioning in euthymic bipolar patients. There is a lack of long-term studies to determine the course of cognitive impairment and its impact on functional outcome. Method A total of 54 subjects were assessed at baseline and 6 years later; 28 had DSM-IV TR bipolar I or II disorder (recruited, at baseline, from a Lithium Clinic Program) and 26 were healthy matched controls. They were all assessed with a cognitive battery tapping into the main cognitive domains (executive function, attention, processing speed, verbal memory and visual memory) twice over a 6-year follow-up period. All patients were euthymic (Hamilton Rating Scale for Depression score lower than 8 and Young mania rating scale score lower than 6) for at least 3 months before both evaluations. At the end of follow-up, psychosocial functioning was also evaluated by means of the Functioning Assessment Short Test. RESULTS: Repeated-measures multivariate analysis of covariance showed that there were main effects of group in the executive domain, in the inhibition domain, in the processing speed domain, and in the verbal memory domain (p<0.04). Among the clinical factors, only longer illness duration was significantly related to slow processing (p=0.01), whereas strong relationships were observed between impoverished cognition along time and poorer psychosocial functioning (p<0.05). CONCLUSIONS: Executive functioning, inhibition, processing speed and verbal memory were impaired in euthymic bipolar out-patients. Although cognitive deficits remained stable on average throughout the follow-up, they had enduring negative effects on psychosocial adaptation of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity), currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW-SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION") located at 42 02.50 N, 4 410 E, at 2350-m depth, show that open-ocean convection reached midwater depth ( 1000-m depth) during winter 2007-2008, and reached the seabed ( 2350-m depth) during winter 2008-2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008-2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008-2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5 %, were abnormally low ( 1 %) during winter 2008-2009 and approached those observed in surface sediments (0.6 %). Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization of sediments in the deep outer margin and the basin, with a subsequent alteration of the seabed likely impacting the functioning of the deep-sea ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catastrophic storms have been observed to be one of the major elements in shaping the standing structure of marine benthic ecosystems. Yet, little is known about the effect of catastrophic storms on ecosystem processes. Specifically, herbivory is the main control mechanism of macrophyte communities in the Mediterranean, with two main key herbivores: the sea urchin Paracentrotus lividus and the fish Sarpa salpa. Consequently, the effects of extreme storm events on these two herbivores (at the population level and on their behaviour) may be critical for the functioning of the ecosystem. With the aim of filling this gap, we took advantage of two parallel studies that were conducted before, during and after an unexpected catastrophic storm event. Specifically, fish and sea urchin abundance were assessed before and after the storm in monitored fixed areas (one site for sea urchin assessment and 3 sites for fish visual transects). Additionally, we investigated the behavioural response to the disturbance of S. salpa fishes that had been tagged with acoustic transmitters. Given their low mobility, sea urchins were severely affected by the storm (ca. 50% losses) with higher losses in those patches with a higher density of sea urchins. This may be due to a limited availability of refuges within each patch. In contrast, fish abundance was not affected, as fish were able to move to protected areas (i.e. deeper) as a result of the high mobility of this species. Our results highlight that catastrophic storms differentially affect the two dominant macroherbivores of rocky macroalgal and seagrass systems due to differences in mobility and escaping strategies. This study emphasises that under catastrophic disturbances, the presence of different responses among the key herbivores of the system may be critical for the maintenance of the herbivory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the topdown effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire.We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.