39 resultados para Earth observation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of the low-temperature magnetic relaxation in random magnets. The first part of the paper contains theoretical analysis of the expected features of the relaxation, based upon current theories of quantum tunneling of magnetization. Models of tunneling, dissipation, the crossover from the thermal to the quantum regime, and the effect of barrier distribution on the relaxation rate are discussed. It is argued that relaxation-type experiments are ideally suited for the observation of magnetic tunneling, since they automatically provide the condition of very low barriers. The second part of the paper contains experimental results on transition-metal¿rare-earth amorphous magnets. Structural and magnetic characterization of materials is presented. The temperature and field dependence of the magnetic relaxation is studied. Our key observation is a nonthermal character of the relaxation below a few kelvin. The observed features are in agreement with theoretical suggestions on quantum tunneling of magnetization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Virulundo carbonatite in Angola, one of the biggest in the world, contains pyrochlore as an accessory mineral in all of the carbonatite units (calciocarbonatites, ferrocarbonatites, carbonatite breccias, trachytoids). The composition of the primary pyrochlore crystals is very close to fluornatrocalciopyrochlore in all these units. High-temperature hydrothermal processes caused the pseudomorphic replacement of the above crystals by a second generation of pyrochlore, characterized by lower F and Na contents. Low-temperature hydrothermal replacement of the above pyrochlores, associated with production of quartz-carbonates-fluorite veins, controled the development of a third generation of pyrochlore, characterized by high Sr contents. Finally, supergene processes produced the development of a secondary paragenesis in the carbonatite, consisting in late carbonates, goethite, hollandite and REE minerals (mainly synchysite-(Ce), britholite-(Ce), britholite-(La), cerite-(Ce)). Separation of Ce from the other REE was allowed by oxidizing conditions. Therefore, Ce4+ was also incorporated into a late generation of pyrochlore, which is also strongly enriched in Ba and strongly depleted in Ca and Na

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur when an unstable periodic orbit collides with the chaotic attractor. We present here numerical evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh¿Rose model of a neuron, at the transition point between the bursting and spiking dynamics, which are two different dynamic behaviors that this system is able to present. Moreover, besides the change in attractor size, other significant properties of the system undergoing the transitions do change in a relevant qualitative way. The mechanism for such transition is understood in terms of a simple one-dimensional map whose dynamics undergoes a crossover between two different universal behaviors