105 resultados para EFFICIENT SIMULATION
Resumo:
The implementation of public programs to support business R&D projects requires the establishment of a selection process. This selection process faces various difficulties, which include the measurement of the impact of the R&D projects as well as selection process optimization among projects with multiple, and sometimes incomparable, performance indicators. To this end, public agencies generally use the peer review method, which, while presenting some advantages, also demonstrates significant drawbacks. Private firms, on the other hand, tend toward more quantitative methods, such as Data Envelopment Analysis (DEA), in their pursuit of R&D investment optimization. In this paper, the performance of a public agency peer review method of project selection is compared with an alternative DEA method.
Resumo:
During the last two decades there has been an increase in using dynamic tariffs for billing household electricity consumption. This has questioned the suitability of traditional pricing schemes, such as two-part tariffs, since they contribute to create marked peak and offpeak demands. The aim of this paper is to assess if two-part tariffs are an efficient pricing scheme using Spanish household electricity microdata. An ordered probit model with instrumental variables on the determinants of power level choice and non-paramentric spline regressions on the electricity price distribution will allow us to distinguish between the tariff structure choice and the simultaneous demand decisions. We conclude that electricity consumption and dwellings’ and individuals’ characteristics are key determinants of the fixed charge paid by Spanish households Finally, the results point to the inefficiency of the two-part tariff as those consumers who consume more electricity pay a lower price than the others.
Resumo:
Nowadays, many of the health care systems are large and complex environments and quite dynamic, specifically Emergency Departments, EDs. It is opened and working 24 hours per day throughout the year with limited resources, whereas it is overcrowded. Thus, is mandatory to simulate EDs to improve qualitatively and quantitatively their performance. This improvement can be achieved modelling and simulating EDs using Agent-Based Model, ABM and optimising many different staff scenarios. This work optimises the staff configuration of an ED. In order to do optimisation, objective functions to minimise or maximise have to be set. One of those objective functions is to find the best or optimum staff configuration that minimise patient waiting time. The staff configuration comprises: doctors, triage nurses, and admissions, the amount and sort of them. Staff configuration is a combinatorial problem, that can take a lot of time to be solved. HPC is used to run the experiments, and encouraging results were obtained. However, even with the basic ED used in this work the search space is very large, thus, when the problem size increases, it is going to need more resources of processing in order to obtain results in an acceptable time.
Resumo:
This paper discusses the use of probabilistic or randomized algorithms for solving combinatorial optimization problems. Our approach employs non-uniform probability distributions to add a biased random behavior to classical heuristics so a large set of alternative good solutions can be quickly obtained in a natural way and without complex conguration processes. This procedure is especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods, both of exact and approximate nature, may fail to reach their full potential. The results obtained are promising enough to suggest that randomizing classical heuristics is a powerful method that can be successfully applied in a variety of cases.
Resumo:
Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational resources. Grid enables access to the resources but it does not guarantee any quality of service. Moreover, Grid does not provide performance isolation; job of one user can influence the performance of other user’s job. The other problem with Grid is that the users of Grid belong to scientific community and the jobs require specific and customized software environment. Providing the perfect environment to the user is very difficult in Grid for its dispersed and heterogeneous nature. Though, Cloud computing provide full customization and control, but there is no simple procedure available to submit user jobs as in Grid. The Grid computing can provide customized resources and performance to the user using virtualization. A virtual machine can join the Grid as an execution node. The virtual machine can also be submitted as a job with user jobs inside. Where the first method gives quality of service and performance isolation, the second method also provides customization and administration in addition. In this thesis, a solution is proposed to enable virtual machine reuse which will provide performance isolation with customization and administration. The same virtual machine can be used for several jobs. In the proposed solution customized virtual machines join the Grid pool on user request. Proposed solution describes two scenarios to achieve this goal. In first scenario, user submits their customized virtual machine as a job. The virtual machine joins the Grid pool when it is powered on. In the second scenario, user customized virtual machines are preconfigured in the execution system. These virtual machines join the Grid pool on user request. Condor and VMware server is used to deploy and test the scenarios. Condor supports virtual machine jobs. The scenario 1 is deployed using Condor VM universe. The second scenario uses VMware-VIX API for scripting powering on and powering off of the remote virtual machines. The experimental results shows that as scenario 2 does not need to transfer the virtual machine image, the virtual machine image becomes live on pool more faster. In scenario 1, the virtual machine runs as a condor job, so it easy to administrate the virtual machine. The only pitfall in scenario 1 is the network traffic.
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.
Resumo:
We developed a procedure that combines three complementary computational methodologies to improve the theoretical description of the electronic structure of nickel oxide. The starting point is a Car-Parrinello molecular dynamics simulation to incorporate vibrorotational degrees of freedom into the material model. By means ofcomplete active space self-consistent field second-order perturbation theory (CASPT2) calculations on embedded clusters extracted from the resulting trajectory, we describe localized spectroscopic phenomena on NiO with an efficient treatment of electron correlation. The inclusion of thermal motion into the theoretical description allowsus to study electronic transitions that, otherwise, would be dipole forbidden in the ideal structure and results in a natural reproduction of the band broadening. Moreover, we improved the embedded cluster model by incorporating self-consistently at the complete active space self-consistent field (CASSCF) level a discrete (or direct) reaction field (DRF) in the cluster surroundings. The DRF approach offers an efficient treatment ofelectric response effects of the crystalline embedding to the electronic transitions localized in the cluster. We offer accurate theoretical estimates of the absorption spectrum and the density of states around the Fermi level of NiO, and a comprehensive explanation of the source of the broadening and the relaxation of the charge transferstates due to the adaptation of the environment
Resumo:
The Voxel Imaging PET (VIP) Path nder project got the 4 year European Research Council FP7 grant in 2010 to prove the feasibility of using CdTe detectors in a novel conceptual design of PET scanner. The work presented in this thesis is a part of the VIP project and consists of, on the one hand, the characterization of a CdTe detector in terms of energy resolution and coincidence time resolution and, on the other hand, the simulation of the setup with the single detector in order to extend the results to the full PET scanner. An energy resolution of 0.98% at 511 keV with a bias voltage of 1000 V/mm has been measured at low temperature T=-8 ºC. The coincidence time distribution of two twin detectors has been found to be as low as 6 ns FWHM for events with energies above 500 keV under the same temperature and bias conditions. The measured energy and time resolution values are compatible with similar ndings available in the literature and prove the excellent potential of CdTe for PET applications. This results have been presented in form of a poster contribution at the IEEE NSS/MIC & RTSD 2011 conference in October 2011 in Valencia and at the iWoRID 2012 conference in July 2012 in Coimbra, Portugal. They have been also submitted for publication to "Journal of Instrumentation (JINST)" in September 2012.
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
Earthquakes occurring around the world each year cause thousands ofdeaths, millions of dollars in damage to infrastructure, and incalculablehuman suffering. In recent years, satellite technology has been asignificant boon to response efforts following an earthquake and itsafter-effects by providing mobile communications between response teamsand remote sensing of damaged areas to disaster management organizations.In 2007, an international team of students and professionals assembledduring theInternational Space University’s Summer Session Program in Beijing, Chinato examine how satellite and ground-based technology could be betterintegrated to provide an optimised response in the event of an earthquake.The resulting Technology Resources for Earthquake MOnitoring and Response(TREMOR) proposal describes an integrative prototype response system thatwill implement mobile satellite communication hubs providing telephone anddata links between response teams, onsite telemedicine consultation foremergency first-responders, and satellite navigation systems that willlocate and track emergency vehicles and guide search-and-rescue crews. Aprototype earthquake simulation system is also proposed, integratinghistorical data, earthquake precursor data, and local geomatics andinfrastructure information to predict the damage that could occur in theevent of an earthquake. The backbone of these proposals is a comprehensiveeducation and training program to help individuals, communities andgovernments prepare in advance. The TREMOR team recommends thecoordination of these efforts through a centralised, non-governmentalorganization.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.