57 resultados para Dynamic data analysis
Resumo:
The low levels of unemployment recorded in the UK in recent years are widely cited asevidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from theseconclusions have drawn attention to the greatly increased extent of non-employment(around a quarter of the UK’s working age population are not in employment) and themarked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst oldermales previously employed in the now very much smaller ‘heavy’ industries (e.g. coal,steel, shipbuilding).This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of theproblem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size ofthe non-employment rate and the share of those not employed through reason of sicknessor disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men
Resumo:
The main instrument used in psychological measurement is the self-report questionnaire. One of its majordrawbacks however is its susceptibility to response biases. A known strategy to control these biases hasbeen the use of so-called ipsative items. Ipsative items are items that require the respondent to makebetween-scale comparisons within each item. The selected option determines to which scale the weight ofthe answer is attributed. Consequently in questionnaires only consisting of ipsative items everyrespondent is allotted an equal amount, i.e. the total score, that each can distribute differently over thescales. Therefore this type of response format yields data that can be considered compositional from itsinception.Methodological oriented psychologists have heavily criticized this type of item format, since the resultingdata is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians havekept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate bothpositions and addresses the similarities and differences between the two data collection methods. Theultimate objective is to formulate a guideline when to use which type of item format.The comparison is based on data obtained with both an ipsative and normative version of threepsychological questionnaires, which were administered to 502 first-year students in psychology accordingto a balanced within-subjects design. Previous research only compared the direct ipsative scale scoreswith the derived ipsative scale scores. The use of compositional data analysis techniques also enables oneto compare derived normative score ratios with direct normative score ratios. The addition of the secondcomparison not only offers the advantage of a better-balanced research strategy. In principle it also allowsfor parametric testing in the evaluation
Resumo:
Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rankscales. Nevertheless, these scales have particular characteristics that must be taken into account: totalscores and rank are highly relevant
Resumo:
Isotopic data are currently becoming an important source of information regardingsources, evolution and mixing processes of water in hydrogeologic systems. However, itis not clear how to treat with statistics the geochemical data and the isotopic datatogether. We propose to introduce the isotopic information as new parts, and applycompositional data analysis with the resulting increased composition. Results areequivalent to downscale the classical isotopic delta variables, because they are alreadyrelative (as needed in the compositional framework) and isotopic variations are almostalways very small. This methodology is illustrated and tested with the study of theLlobregat River Basin (Barcelona, NE Spain), where it is shown that, though verysmall, isotopic variations comp lement geochemical principal components, and help inthe better identification of pollution sources
Resumo:
In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by asimplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able togenerate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow definingmonitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
One of the disadvantages of old age is that there is more past than future: this,however, may be turned into an advantage if the wealth of experience and, hopefully,wisdom gained in the past can be reflected upon and throw some light on possiblefuture trends. To an extent, then, this talk is necessarily personal, certainly nostalgic,but also self critical and inquisitive about our understanding of the discipline ofstatistics. A number of almost philosophical themes will run through the talk: searchfor appropriate modelling in relation to the real problem envisaged, emphasis onsensible balances between simplicity and complexity, the relative roles of theory andpractice, the nature of communication of inferential ideas to the statistical layman, theinter-related roles of teaching, consultation and research. A list of keywords might be:identification of sample space and its mathematical structure, choices betweentransform and stay, the role of parametric modelling, the role of a sample spacemetric, the underused hypothesis lattice, the nature of compositional change,particularly in relation to the modelling of processes. While the main theme will berelevance to compositional data analysis we shall point to substantial implications forgeneral multivariate analysis arising from experience of the development ofcompositional data analysis…
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
First application of compositional data analysis techniques to Australian election data
Resumo:
In any discipline, where uncertainty and variability are present, it is important to haveprinciples which are accepted as inviolate and which should therefore drive statisticalmodelling, statistical analysis of data and any inferences from such an analysis.Despite the fact that two such principles have existed over the last two decades andfrom these a sensible, meaningful methodology has been developed for the statisticalanalysis of compositional data, the application of inappropriate and/or meaninglessmethods persists in many areas of application. This paper identifies at least tencommon fallacies and confusions in compositional data analysis with illustrativeexamples and provides readers with necessary, and hopefully sufficient, arguments topersuade the culprits why and how they should amend their ways
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
Several eco-toxicological studies have shown that insectivorous mammals, due to theirfeeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uenceon essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P,S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greaterwhite-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control(Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can givemisleading results. Therefore, to improve the interpretation of the data obtained, weused statistical techniques for compositional data analysis to define groups of metalsand to evaluate the relationships between them, from an inter-population viewpoint.Hypothesis testing on the adequate balance-coordinates allow us to confirm intuitionbased hypothesis and some previous results. The main statistical goal was to test equalmeans of balance-coordinates for the two defined populations. After checking normality,one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances