56 resultados para Displacement
Nuevo disipador para edificación sismorresistente. 1ª parte: caracterización y modelos de predicción
Resumo:
A new energy dissipator, based on yielding of steel under shear response, has been developed and recently tested. It is H shaped and web stiffened. Yielding moin part is mechanized from one piece of rectangular shoped steel bar. Its conception let obtain thin and well-stiffened web cross sections without welded parts. Main experimentally obtained charecteristics are a yielding point near 0.5 mm of displacement, yielding loads between 14 kN and 20 kN and a dissipated energy, before damage appears in the web, from 10 kJ to 21 kJ. All tested specimens have developed large deformations without web buckling. Whe web degradation appers, flanges and stiffeners keep dissipating an important amount of energy. Proposed numerical models and simple mathematical expressions offer well correlated results when compared to the experimental ones
Resumo:
This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.
Resumo:
In our analysis we try and recover the wage loss from unemploymentin Spain and see how it is affected by previous unemploymentexperience, unemployment duration, eligibility for unemploymentbenefits, and previous wages. We also study its variations acrossgroups. Our main conclusion is that while there is some evidencethat labour market rigidities tend to lower it, the wage loss ofdisplaced workers is remarkably high: more than 30%, that is,twice the equivalent figure for the US and France. Wages in Spainsuffer from a serious mismeasurement problems that we do our best tocontrol, so that our results are less robust than the ones thatwould be obtained with better data sets. However, they indicate a large level of wage flexibility in Spain.
Resumo:
This paper compares two well known scan matching algorithms: the MbICP and the pIC. As a result of the study, it is proposed the MSISpIC, a probabilistic scan matching algorithm for the localization of an Autonomous Underwater Vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), and the robot displacement estimated through dead-reckoning with the help of a Doppler Velocity Log (DVL) and a Motion Reference Unit (MRU). The proposed method is an extension of the pIC algorithm. Its major contribution consists in: 1) using an EKF to estimate the local path traveled by the robot while grabbing the scan as well as its uncertainty and 2) proposing a method to group into a unique scan, with a convenient uncertainty model, all the data grabbed along the path described by the robot. The algorithm has been tested on an AUV guided along a 600m path within a marina environment with satisfactory results
Resumo:
The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of a Mediterranean flash flood event, a final objective of this paper is to undertake a description of the evolution of the rainfall structure that would be sufficiently clear to be understood at an interdisciplinary forum. Then, it could be useful not only to improve conceptual meteorological models, but also for application in downscaling models. The main precipitation structure was a Mesoscale Convective System (MCS) that crossed the region and that developed as a consequence of the merging of two previous squall lines. The paper analyses the main meteorological features that led to the development and triggering of the heavy rainfalls, with special emphasis on the features of this MCS, its life cycle and its dynamic features. To this end, 2-D and 3-D algorithms were applied to the imagery recorded over the complete life cycle of the structures, which lasted approximately 18 h. Mesoscale and synoptic information were also considered. Results show that it was an NS-MCS, quasi-stationary during its stage of maturity as a consequence of the formation of a convective train, the different displacement directions of the 2-D structures and the 3-D structures, including the propagation of new cells, and the slow movement of the convergence line associated with the Mediterranean mesoscale low.
Resumo:
An experimental method of studying shifts between concentration-versus-depth profiles of vacancy- and interstitial-type defects in ion-implanted silicon is demonstrated. The concept is based on deep level transient spectroscopy measurements utilizing the filling pulse variation technique. The vacancy profile, represented by the vacancy¿oxygen center, and the interstitial profile, represented by the interstitial carbon¿substitutional carbon pair, are obtained at the same sample temperature by varying the duration of the filling pulse. The effect of the capture in the Debye tail has been extensively studied and taken into account. Thus, the two profiles can be recorded with a high relative depth resolution. Using low doses, point defects have been introduced in lightly doped float zone n-type silicon by implantation with 6.8 MeV boron ions and 680 keV and 1.3 MeV protons at room temperature. The effect of the angle of ion incidence has also been investigated. For all implantation conditions the peak of the interstitial profile is displaced towards larger depths compared to that of the vacancy profile. The amplitude of this displacement increases as the width of the initial point defect distribution increases. This behavior is explained by a simple model where the preferential forward momentum of recoiling silicon atoms and the highly efficient direct recombination of primary point defects are taken into account.
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.