21 resultados para Design time
Resumo:
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.
Resumo:
Process variations are a major bottleneck for digital CMOS integrated circuits manufacturability and yield. That iswhy regular techniques with different degrees of regularity are emerging as possible solutions. Our proposal is a new regular layout design technique called Via-Configurable Transistors Array (VCTA) that pushes to the limit circuit layout regularity for devices and interconnects in order to maximize regularity benefits. VCTA is predicted to perform worse than the Standard Cell approach designs for a certain technology node but it will allow the use of a future technology on an earlier time. Ourobjective is to optimize VCTA for it to be comparable to the Standard Cell design in an older technology. Simulations for the first unoptimized version of our VCTA of delay and energy consumption for a Full Adder circuit in the 90 nm technology node are presented and also the extrapolation for Carry-RippleAdders from 4 bits to 64 bits.
Resumo:
Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.
Resumo:
This paper aims to better understand the development of students’ learning processes when participating actively in a specific Computer Supported Collaborative Learning system called KnowCat. To this end, a longitudinal case study was designed, in which eighteen university students took part in a 12-month (two semesters) learning project. During this time period, the students followed an instructional process, using some elements of KnowCat (KnowCat key features) design to support and improve their interaction processes, especially peer learning processes. Our research involved both supervising the students’ collaborative learning processes throughout the learning project and focusing our analysis on the qualitative evolution of the students’ interaction processes and on the development of metacognitive learning processes. The results of the current research reveal that the instructional application of the CSCL-KnowCat system may favour and improve the development of the students’ metacognitive learning processes. Additionally, the implications of the design of computer supported collaborative learning networks and pedagogical issues are discussed in this paper.
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.