18 resultados para De novo peptide sequencing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A rapid phage display method for the elucidation of cognate peptide specific ligand for receptors is described. The approach may be readily integrated into the interface of genomic and proteomic studies to identify biologically relevant ligands.Methods: A gene fragment library from influenza coat protein haemagglutinin (HA) gene was constructed by treating HA cDNA with DNAse I to create 50 ¿ 100 bp fragments. These fragments were cloned into plasmid pORFES IV and in-frame inserts were selected. These in-frame fragment inserts were subsequently cloned into a filamentous phage display vector JC-M13-88 for surface display as fusions to a synthetic copy of gene VIII. Two well characterized antibodies, mAb 12CA5 and pAb 07431, directed against distinct known regions of HA were used to pan the library. Results: Two linear epitopes, HA peptide 112 ¿ 126 and 162¿173, recognized by mAb 12CA5 and pAb 07431, respectively, were identified as the cognate epitopes.Conclusion: This approach is a useful alternative to conventional methods such as screening of overlapping synthetic peptide libraries or gene fragment expression libraries when searching for precise peptide protein interactions, and may be applied to functional proteomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past 5 years "Next-generation" Sequencing (NGS) technologies have transformed genomics by delivering fast, inexpensive and accurate genomeinformation changing the way we think about scientific approaches in basic,applied and clinical research. The inexpensive production of large volumes ofsequence data is the main advantage over the automated Sanger method,making this new technology useful for many applications. In this chapter, a brieftechnical review of NGS technologies is given, along with the keys to NGSsuccess and a broad range of applications for NGS technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there is a significant deficit of breakpoints in genes, we identified seven human gene structures involved in signaling pathways (DEPDC4, GNG10), phospholipid metabolism (ENPP5, PLSCR2), beta-oxidation (ECH1), cellular structure and transport (HEATR4), and transcription (ZNF461), that have been disrupted in the NLE gibbon lineage. Notably, only three of these genes show the expected evolutionary signatures of pseudogenization. Sequence analysis of the breakpoints suggested both nonclassical nonhomologous end-joining (NHEJ) and replication-based mechanisms of rearrangement. A substantial number (11/24) of human-NLE gibbon breakpoints showed new insertions of gibbon-specific repeats and mosaic structures formed from disparate sequences including segmental duplications, LINE, SINE, and LTR elements. Analysis of these sites provides a model for a replication-dependent repair mechanism for double-strand breaks (DSBs) at rearrangement sites and insights into the structure and formation of primate segmental duplications at sites of genomic rearrangements during evolution.