67 resultados para DNA CONDENSATION
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.
Resumo:
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles, are presented, using the counter-ion structure and the DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.
Resumo:
DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp
Resumo:
BACKGROUND: DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. RESULTS: We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. CONCLUSION: VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.
Resumo:
Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...
Resumo:
Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, ß-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to ß-lactam antibiotics is conferred by ß-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to ß-lactam antibiotics, namely two ß-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.
Resumo:
Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 35 units of Ler. DNA wraps around Ler particles that contain more than 1516 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.
Resumo:
The first dichloroplatinum(II) conjugates of dicarba analogues of octreotide , which is expected to act as a"tumour-targeting device", have been efficiently synthesized following a stepwise solid-phase approach; these compounds emulate the mechanism of cisplatin since they form a 1,2-intrastrand cross-link with two consecutive guanines of an oligonucleotide.
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.
Resumo:
A general understanding of interactions between DNA andoppositely charged compounds forms the basis for developing novelDNA-based materials, including gel particles. The association strength,which is altered by varying the chemical structure of the cationiccosolute, determines the spatial homogeneity of the gelation process,creating DNA reservoir devices and DNA matrix devices that can bedesigned to release either single- (ssDNA) or double-stranded(dsDNA) DNA. This paper reviews the preparation of DNA gelparticles using surfactants, proteins and polysaccharides. Particlemorphology, swelling/dissolution behaviour, degree of DNAentrapment and DNA release responses as a function of the nature ofthe cationic agent used are discussed. Current directions in thehaemocompatible and cytotoxic characterization of these DNA gelparticles have been also included.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.