22 resultados para Crime forecasting
Resumo:
Forecasting coal resources and reserves is critical for coal mine development. Thickness maps are commonly used for assessing coal resources and reserves; however they are limited for capturing coal splitting effects in thick and heterogeneous coal zones. As an alternative, three-dimensional geostatistical methods are used to populate facies distributionwithin a densely drilled heterogeneous coal zone in the As Pontes Basin (NWSpain). Coal distribution in this zone is mainly characterized by coal-dominated areas in the central parts of the basin interfingering with terrigenous-dominated alluvial fan zones at the margins. The three-dimensional models obtained are applied to forecast coal resources and reserves. Predictions using subsets of the entire dataset are also generated to understand the performance of methods under limited data constraints. Three-dimensional facies interpolation methods tend to overestimate coal resources and reserves due to interpolation smoothing. Facies simulation methods yield similar resource predictions than conventional thickness map approximations. Reserves predicted by facies simulation methods are mainly influenced by: a) the specific coal proportion threshold used to determine if a block can be recovered or not, and b) the capability of the modelling strategy to reproduce areal trends in coal proportions and splitting between coal-dominated and terrigenousdominated areas of the basin. Reserves predictions differ between the simulation methods, even with dense conditioning datasets. Simulation methods can be ranked according to the correlation of their outputs with predictions from the directly interpolated coal proportion maps: a) with low-density datasets sequential indicator simulation with trends yields the best correlation, b) with high-density datasets sequential indicator simulation with post-processing yields the best correlation, because the areal trends are provided implicitly by the dense conditioning data.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper
Resumo:
Language extinction as a consequence of language shifts is a widespread social phenomenon that affects several million people all over the world today. An important task for social sciences research should therefore be to gain an understanding of language shifts, especially as a way of forecasting the extinction or survival of threatened languages, i.e., determining whether or not the subordinate language will survive in communities with a dominant and a subordinate language. In general, modeling is usually a very difficult task in the social sciences, particularly when it comes to forecasting the values of variables. However, the cellular automata theory can help us overcome this traditional difficulty. The purpose of this article is to investigate language shifts in the speech behavior of individuals using the methodology of the cellular automata theory. The findings on the dynamics of social impacts in the field of social psychology and the empirical data from language surveys on the use of Catalan in Valencia allowed us to define a cellular automaton and carry out a set of simulations using that automaton. The simulation results highlighted the key factors in the progression or reversal of a language shift and the use of these factors allowed us to forecast the future of a threatened language in a bilingual community.
Resumo:
This paper focuses on the study of the factorial structure of an inventory to estimate the subjective perception of insecurity and fear of crime. Made from the review of the literature on the subject and the results obtained in previous works, this factor structure shows that this attitude towards insecurity and fear of crime is identified through a number of latent factors which are schematically summarized in (a) personal safety, (b) the perception of personal and social control, (c) the presence of threatening people or situations, (d) the processes of identity and space appropriation, (e) satisfaction with the environment, and (f) the environmental and the use of space. Such factors are relevant dimensions to analyze the phenomenon. Method: A sample of 571 participants in a neighborhood of Barcelona was evaluated with the proposed inventory, which yielded data from the distributions of all the items provided. The administration was conducted by researchers specially trained for it and the results were analyzed by using standard procedures in the confirmatory factor analysis (CFA) from the hypothesized theoretical structure. The analysis was performed by decatypes according to the different response scales prepared in the inventory and their ordinal nature, and by estimating the polychoric correlation coefficients. The results show an acceptable fit of the proposed model, an appropriate behavior of the residuals and statistically significant estimates of the factor loadings. This would indicate the goodness of the proposed factor structure.
Resumo:
In the world of transport management, the term ‘anticipation’ is gradually replacing ‘reaction’. Indeed, the ability to forecast traffic evolution in a network should ideally form the basis for many traffic management strategies and multiple ITS applications. Real-time prediction capabilities are therefore becoming a concrete need for the management of networks, both for urban and interurban environments, and today’s road operator has increasingly complex and exacting requirements. Recognising temporal patterns in traffic or the manner in which sequential traffic events evolve over time have been important considerations in short-term traffic forecasting. However, little work has been conducted in the area of identifying or associating traffic pattern occurrence with prevailing traffic conditions. This paper presents a framework for detection pattern identification based on finite mixture models using the EM algorithm for parameter estimation. The computation results have been conducted taking into account the traffic data available in an urban network.
Resumo:
Most motor bodily injury (BI) claims are settled by negotiation, with fewer than 5% of cases going to court. A well-defined negotiation strategy is thus very useful for insurance companies. In this paper we assume that the monetary compensation awarded in court is the upper amount to be offered by the insurer in the negotiation process. Using a real database, a log-linear model is implemented to estimate the maximal offer. Non-spherical disturbances are detected. Correlation occurs when various claims are settled in the same judicial verdict. Group wise heteroscedasticity is due to the influence of the forensic valuation on the final compensation amount. An alternative approximation based on generalized inference theory is applied to estimate confidence intervals on variance components, since classical interval estimates may be unreliable for datasets with unbalanced structures.