60 resultados para Compositional Nutrient Diagnosis (CND)
Resumo:
Compositional data naturally arises from the scientific analysis of the chemicalcomposition of archaeological material such as ceramic and glass artefacts. Data of thistype can be explored using a variety of techniques, from standard multivariate methodssuch as principal components analysis and cluster analysis, to methods based upon theuse of log-ratios. The general aim is to identify groups of chemically similar artefactsthat could potentially be used to answer questions of provenance.This paper will demonstrate work in progress on the development of a documentedlibrary of methods, implemented using the statistical package R, for the analysis ofcompositional data. R is an open source package that makes available very powerfulstatistical facilities at no cost. We aim to show how, with the aid of statistical softwaresuch as R, traditional exploratory multivariate analysis can easily be used alongside, orin combination with, specialist techniques of compositional data analysis.The library has been developed from a core of basic R functionality, together withpurpose-written routines arising from our own research (for example that reported atCoDaWork'03). In addition, we have included other appropriate publicly availabletechniques and libraries that have been implemented in R by other authors. Availablefunctions range from standard multivariate techniques through to various approaches tolog-ratio analysis and zero replacement. We also discuss and demonstrate a smallselection of relatively new techniques that have hitherto been little-used inarchaeometric applications involving compositional data. The application of the libraryto the analysis of data arising in archaeometry will be demonstrated; results fromdifferent analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry
Resumo:
Developments in the statistical analysis of compositional data over the last twodecades have made possible a much deeper exploration of the nature of variability,and the possible processes associated with compositional data sets from manydisciplines. In this paper we concentrate on geochemical data sets. First we explainhow hypotheses of compositional variability may be formulated within the naturalsample space, the unit simplex, including useful hypotheses of subcompositionaldiscrimination and specific perturbational change. Then we develop through standardmethodology, such as generalised likelihood ratio tests, statistical tools to allow thesystematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require specialconstruction. We comment on the use of graphical methods in compositional dataanalysis and on the ordination of specimens. The recent development of the conceptof compositional processes is then explained together with the necessary tools for astaying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland.Finally we point out a number of unresolved problems in the statistical analysis ofcompositional processes
Resumo:
In standard multivariate statistical analysis common hypotheses of interest concern changes in mean vectors and subvectors. In compositional data analysis it is now well established that compositional change is most readily described in terms of the simplicial operation of perturbation and that subcompositions replace the marginal concept of subvectors. To motivate the statistical developments of this paper we present two challenging compositional problems from food production processes.Against this background the relevance of perturbations and subcompositions can beclearly seen. Moreover we can identify a number of hypotheses of interest involvingthe specification of particular perturbations or differences between perturbations and also hypotheses of subcompositional stability. We identify the two problems as being the counterpart of the analysis of paired comparison or split plot experiments and of separate sample comparative experiments in the jargon of standard multivariate analysis. We then develop appropriate estimation and testing procedures for a complete lattice of relevant compositional hypotheses
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
The statistical analysis of compositional data is commonly used in geological studies.As is well-known, compositions should be treated using logratios of parts, which aredifficult to use correctly in standard statistical packages. In this paper we describe thenew features of our freeware package, named CoDaPack, which implements most of thebasic statistical methods suitable for compositional data. An example using real data ispresented to illustrate the use of the package
Resumo:
The low levels of unemployment recorded in the UK in recent years are widely cited asevidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from theseconclusions have drawn attention to the greatly increased extent of non-employment(around a quarter of the UK’s working age population are not in employment) and themarked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst oldermales previously employed in the now very much smaller ‘heavy’ industries (e.g. coal,steel, shipbuilding).This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of theproblem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size ofthe non-employment rate and the share of those not employed through reason of sicknessor disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use
Resumo:
At CoDaWork'03 we presented work on the analysis of archaeological glass composi-tional data. Such data typically consist of geochemical compositions involving 10-12variables and approximates completely compositional data if the main component, sil-ica, is included. We suggested that what has been termed `crude' principal componentanalysis (PCA) of standardized data often identi ed interpretable pattern in the datamore readily than analyses based on log-ratio transformed data (LRA). The funda-mental problem is that, in LRA, minor oxides with high relative variation, that maynot be structure carrying, can dominate an analysis and obscure pattern associatedwith variables present at higher absolute levels. We investigate this further using sub-compositional data relating to archaeological glasses found on Israeli sites. A simplemodel for glass-making is that it is based on a `recipe' consisting of two `ingredients',sand and a source of soda. Our analysis focuses on the sub-composition of componentsassociated with the sand source. A `crude' PCA of standardized data shows two clearcompositional groups that can be interpreted in terms of di erent recipes being used atdi erent periods, reected in absolute di erences in the composition. LRA analysis canbe undertaken either by normalizing the data or de ning a `residual'. In either case,after some `tuning', these groups are recovered. The results from the normalized LRAare di erently interpreted as showing that the source of sand used to make the glassdi ered. These results are complementary. One relates to the recipe used. The otherrelates to the composition (and presumed sources) of one of the ingredients. It seemsto be axiomatic in some expositions of LRA that statistical analysis of compositionaldata should focus on relative variation via the use of ratios. Our analysis suggests thatabsolute di erences can also be informative
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather
Resumo:
The main instrument used in psychological measurement is the self-report questionnaire. One of its majordrawbacks however is its susceptibility to response biases. A known strategy to control these biases hasbeen the use of so-called ipsative items. Ipsative items are items that require the respondent to makebetween-scale comparisons within each item. The selected option determines to which scale the weight ofthe answer is attributed. Consequently in questionnaires only consisting of ipsative items everyrespondent is allotted an equal amount, i.e. the total score, that each can distribute differently over thescales. Therefore this type of response format yields data that can be considered compositional from itsinception.Methodological oriented psychologists have heavily criticized this type of item format, since the resultingdata is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians havekept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate bothpositions and addresses the similarities and differences between the two data collection methods. Theultimate objective is to formulate a guideline when to use which type of item format.The comparison is based on data obtained with both an ipsative and normative version of threepsychological questionnaires, which were administered to 502 first-year students in psychology accordingto a balanced within-subjects design. Previous research only compared the direct ipsative scale scoreswith the derived ipsative scale scores. The use of compositional data analysis techniques also enables oneto compare derived normative score ratios with direct normative score ratios. The addition of the secondcomparison not only offers the advantage of a better-balanced research strategy. In principle it also allowsfor parametric testing in the evaluation
Resumo:
Most of economic literature has presented its analysis under the assumption of homogeneous capital stock.However, capital composition differs across countries. What has been the pattern of capital compositionassociated with World economies? We make an exploratory statistical analysis based on compositional datatransformed by Aitchinson logratio transformations and we use tools for visualizing and measuring statisticalestimators of association among the components. The goal is to detect distinctive patterns in the composition.As initial findings could be cited that:1. Sectorial components behaved in a correlated way, building industries on one side and , in a lessclear view, equipment industries on the other.2. Full sample estimation shows a negative correlation between durable goods component andother buildings component and between transportation and building industries components.3. Countries with zeros in some components are mainly low income countries at the bottom of theincome category and behaved in a extreme way distorting main results observed in the fullsample.4. After removing these extreme cases, conclusions seem not very sensitive to the presence ofanother isolated cases
Resumo:
Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rankscales. Nevertheless, these scales have particular characteristics that must be taken into account: totalscores and rank are highly relevant