30 resultados para Composite Materials, CFRP, Bond-slip, Double Strap Joint, Steel, Strengthening
Resumo:
En el marc del projecte "Modelització de les propietats òptiques de partícules metàl•liques en matriu dielèctrica" s'han desenvolupat un conjunt d'eines numèriques que permeten avançar en l'ús de l'espectroscòpia òptica per a l'obtenció d'informació morfològica de materials compostos consistents en partícules metàl•liques en matriu dielèctrica. S'han implementat esquemes numèrics per a calcular les propietats òptiques de materials compostos on les partícules poden presentar una distribució de mides i formes i diferent graus d'ordenament espacial. Les simulacions s'han realitzat a dos nivells: i) amb l’aproximació quasi-estàtica, que permet descriure el comportament d'aquests materials en termes de constants òptiques efectives i ii) amb càlculs electrodinàmics exactes, que han servit per avaluar la validesa de l’aproximació anterior i que han permès d'estudiar la interacció de partícules amb feixos de llum focalitzats o amb polarització no homogènia. A través de l’anàlisi d'aquestes simulacions, s'han desenvolupat models senzills que permeten parametritzar la influència de diferents quantitats físiques en el comportament òptic del material. Aquests models s'han implementat en un programari de càlcul que permeten trobar el valor òptim dels paràmetres físics d'interès mitjançant l'ajust d'espectres òptics. Els models s'han avaluat amb l'anàlisi de dades experimentals subministrades per altres laboratoris.
Resumo:
Fully biodegradable composite materials were obtained through reinforcement of a commercially available thermoplastic starch (TPS) matrix with rapeseed fibers (RSF). The influence of reinforcement content on the water sorption capacity, as well as thermal and thermo-mechanical properties of composites were evaluated. Even though the hydrophilic character of natural fibers tends to favor the absorption of water, results demonstrated that the incorporation of RSF did not have a significant effect on the water uptake of the composites. DSC experiments showed that fibers restricted the mobility of the starch macromolecules from the TPS matrix, hence reducing their capacity to crystallize. The viscoelastic behaviour of TPS was also affected, and reinforced materials presented lower viscous deformation and recovery capacity. In addition, the elasticity of materials was considerably diminished when increasing fiber content, as evidenced in the TMA and DMTA measurements
Resumo:
We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition αc which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above αc, however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=92. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.
Resumo:
Durant els últims dos anys un grup d’estudiants de l’Escola Politècnica Superior de laUniversitat de Girona han construït i evolucionat un prototip per competir en la Shell EcoMarathon, una cursa de caràcter internacional que es celebra cada any a Nogaro (França) ia on l’objectiu primordial és aconseguir el mínim consum. Equips de diferents països delmón recorren amb els seus prototips la mateixa distància i el guanyador és qui en finalitzarhagi fet servir menys quantitat de combustible. La intenció de l’equip és continuar competint en aquest cursa durant els propers anys, peraquest motiu cada any es plantegen noves modificacions a realitzar per tal d’aconseguir unprototip més competitiu. Una de les modificacions consisteix en substituir les actuals llantesd’alumini equipades en el vehicle per unes llantes lenticulars fabricades en fibra de carboni.Aquestes llantes en material compòsit representen una millora en prestacions respecte lesllantes convencionals en reduir la inèrcia.Escollir la fibra de carboni com el material a emprar no ha estat a l’atzar. Els avantatges quecomporta la fibra de carboni en referència als rati rigidesa/pes i resistència/pes sónindiscutibles. La resistència a la fatiga d’aquest tipus de material és més elevada que la del’alumini, material utilitzat en les actuals llantes, a més, la voluntat d’entendre millor elcomportament i els processos de fabricació d’aquest material per part dels membres del’equip posicionen a la fibra de carboni com el material més idoni.La solució final adoptada pel disseny de les llantes consta per la unió adhesiva de duespeces iguals fabricades en fibra de carboni. La facilitat de poder fabricar dos “plats” simètricsresulta el punt fort d’aquest disseny, el qual, amb un únic motllo s’arriben a construir latotalitat de les llantes
Resumo:
This paper presents an experimental study of the effects of tow-drop gaps in Variable Stiffness Panels under drop-weight impact events. Two different configurations, with and without ply-staggering, have been manufactured by Automated Fibre Placement and compared with their baseline counterpart without defects. For the study of damage resistance, three levels of low velocity impact energy are generated with a drop-weight tower. The damage area is analysed by means of ultrasonic inspection. Results of the analysed defect configurations indicate that the influence of gap defects is only relevant under small impact energy values. However, in the case of damage tolerance, the residual compressive strength after impact does not present significant differences to that of conventional straight fibre laminates. This indicates that the strength reduction is driven mainly by the damage caused by the impact event rather than by the influence of manufacturing-induced defects
High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites
Resumo:
Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites
Resumo:
One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens
Resumo:
This paper deals with the product design, engineering, and material selection intended for the manufacturing of an eco-friendly chair. The final product is expected to combine design attributes with technical and legal feasibility with the implementation of new bio-based materials. Considering the industrial design, a range of objectives and trends were determined after setting the market requirements, and the final concept was proposed and modeled. The product geometry, production technology, and legal specifications were the input data for product engineering. The material selection was based on the technical requirements. Polypropylene (PP) composite materials based on coupled-fiberglass, sized-fiberglass, and coupled-stone ground wood reinforcements were prepared and characterized. Final formulations based on these PP composites are proposed and justified
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant’s Crack Band Model. To verify the accuracy of the approach, analyses ofcoupon specimens were performed, and the numerical predictions were compared with experimental data
Resumo:
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design
Resumo:
A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters
Resumo:
The failure mechanism of a voided CFRP 0-90° cross-ply laminate under tensile loads applied in one direction was studied in this Final Degree Project. For this purpose, voided coupons were manufactured for being tested and a FEA was done. In both investigations, voids were placed in 90º and 0º direction, in order to understand the void location influence. On the one hand, the behaviour of the voided laminates was investigated through a FEM in order to preview the stress distribution within the material. On the other hand, voided specimens where manufactured by applying blowing agent in between the inner layers. These specimens were tested by a quasi-static step wise tensile test where data showing its real behaviour was collected. Specimens were X-rayed after each step of the test in order to investigate the failure mechanism of the composite. Data from the test was studied so that relations such as strength of the laminates, crack density per stress, void length per first crack at the void and void area per first crack at the specimen could be characterized
Resumo:
Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion