29 resultados para Chromatin.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S.pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes that respond to environmental changes in osmolarity, pH, or temperature. H-NS oligomerization is essential for its activity. Structural models of different truncated forms are available. However, high-resolution structural details of full-length H-NS and its DNA-bound state have largely remained elusive. We report on progress in characterizing the biologically active H-NS oligomers with solid-state NMR. We compared uniformly ((13)C,(15)N)-labeled ssNMR preparations of the isolated N-terminal region (H-NS 1-47) and full-length H-NS (H-NS 1-137). In both cases, we obtained ssNMR spectra of good quality and characteristic of well-folded proteins. Analysis of the results of 2D and 3D (13)C-(13)C and (15)N-(13)C correlation experiments conducted at high magnetic field led to assignments of residues located in different topological regions of the free full-length H-NS. These findings confirm that the structure of the N-terminal dimerization domain is conserved in the oligomeric full-length protein. Small changes in the dimerization interface suggested by localized chemical shift variations between solution and solid-state spectra may be relevant for DNA recoginition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molting hormone ecdysone triggers chromatin changes via histone modifica- tions that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with tran- scriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdy- sone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is re- quired for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB)catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key modulator of glycolysis-gluconeogenesis. To gain insight into the molecular mechanism behind hormonal and nutritional regulation of PFKFB expression, we have cloned and characterized the proximal promoter region of the liver isoform of PFKFB (PFKFB1) from gilthead sea bream (Sparus aurata). Transient transfection of HepG2 cells with deleted gene promoter constructs and electrophoretic mobility shift assays allowed us to identify a sterol regulatory element (SRE) to which SRE binding protein-1a (SREBP-1a)binds and transactivates PFKFB1 gene transcription. Mutating the SRE box abolished SREBP-1a binding and transactivation. The in vivo binding of SREBP-1a to the SRE box in the S. aurata PFKFB1 promoter was confirmed by chromatin immunoprecipitation assays. There is a great deal of evidence for a postprandial rise of PFKB1 mRNA levels in fish and rats. Consistently, starved-to-fed transition and treatment with glucose or insulin increased SREBP-1 immunodetectable levels, SREBP-1 association to PFKFB1 promoter, and PFKFB1 mRNA levels in the piscine liver. Our findings demonstrate involvement of SREBP-1a in the transcriptional activation of PFKFB1, and we conclude that SREBP-1a may exert a key role mediating postprandial activation of PFKFB1 transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB)catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key modulator of glycolysis-gluconeogenesis. To gain insight into the molecular mechanism behind hormonal and nutritional regulation of PFKFB expression, we have cloned and characterized the proximal promoter region of the liver isoform of PFKFB (PFKFB1) from gilthead sea bream (Sparus aurata). Transient transfection of HepG2 cells with deleted gene promoter constructs and electrophoretic mobility shift assays allowed us to identify a sterol regulatory element (SRE) to which SRE binding protein-1a (SREBP-1a)binds and transactivates PFKFB1 gene transcription. Mutating the SRE box abolished SREBP-1a binding and transactivation. The in vivo binding of SREBP-1a to the SRE box in the S. aurata PFKFB1 promoter was confirmed by chromatin immunoprecipitation assays. There is a great deal of evidence for a postprandial rise of PFKB1 mRNA levels in fish and rats. Consistently, starved-to-fed transition and treatment with glucose or insulin increased SREBP-1 immunodetectable levels, SREBP-1 association to PFKFB1 promoter, and PFKFB1 mRNA levels in the piscine liver. Our findings demonstrate involvement of SREBP-1a in the transcriptional activation of PFKFB1, and we conclude that SREBP-1a may exert a key role mediating postprandial activation of PFKFB1 transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. METHODS: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. RESULTS: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. CONCLUSIONS: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging