23 resultados para Charge Qubits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ ␲ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron energy-loss spectroscopy is used to map composition and electronic states in epitaxial La2/3Ca1/3MnO3 films grown on SrTiO3 001 and 110 substrates. It is found that in partially relaxed 110 films cationic composition and valence state of Mn3+/4+ ions are preserved across the film thickness. In contrast, in fully strained 001 films, the Ca/La ratio gradually changes across the film, being La rich at film/substrate interface and La depleted at free surface; Mn valence state changes accordingly. These observations suggest that a strongly orientation-dependent adaptative composition mechanism dominates stress accommodation in manganite films and provides microscopic understanding of their dissimilar magnetic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/ nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible coexistence of ferromagnetism and charge/orbital order in Bi3/4Sr1/4MnO3 has been investigated. The manganite Bi0.75Sr0.25MnO3, with commensurate charge balance, undergoes an electronic transition at TCO~600 K that produces a longrange modulation with double periodicity along a and c axis, and unusual anisotropic evolution of the lattice parameters. The previously proposed ferromagnetic properties of this new ordered phase were studied by magnetometry and diffraction techniques. In zero field the magnetic structure is globally antiferromagnetic, ruling out the apparition of spontaneous ferromagnetism. However, the application of magnetic fields produces a continuous progressive canting of the moments, inducing a ferromagnetic phase even for relatively small fields (H<<1 T). Application of pulsed high fields produces a remarkable and reversible spin polarization (under 30 T, the ferromagnetic moment is ~3 ¿B/Mn, without any sign of charge order melting). The coexistence of ferromagnetism and charge order at low and very-high fields is a remarkable property of this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions -with reliable uncertainties- are provided for 116 nuclei whose charge radius is presently unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards.