30 resultados para Central giant cell granuloma
Resumo:
Objective: The purpose of this study was to investigate the incidence of squamous cell carcinoma (SCC) of the anterior two thirds of the tongue in a population living in central and southern Portugal, all treated at Instituto Português de Oncologia de Lisboa, Francisco Gentil (IPOLFG). Study Design: This study was a retrospective review of all patients who had a histopathological diagnosis of SCC of the anterior two thirds of the tongue and had been treated in the Head and Neck Surgery Unit at the IPOLFG (Lisbon, Portugal), between 1st January 2001 and 31st December 2009. The risk factors evaluated were: gender; age; alcohol consumption; tobacco use; prosthesis use and the carcinoma site. Results: Of the 424 cases analysed, 71% were men. Mean age of occurrence was in 5th decade for males and the 6th decade for females, and the border of the tongue was the most common location. Alcohol consumption and tobacco had a lower impact in women, being the most common aetiological factors in the male population. No significant association was observed between patients and the use of a prosthesis. Conclusions: In spite of the consumption of aohol and tobacco starting to decline in certain parts of the world, our findings showed both factors still have a significant impact in male population. Further research should be done to determine aetiological factors in females.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
Background To determine the diagnostic and prognostic capability of urinary and tumoral syndecan-1 (SDC-1) levels in patients with cancer of the urinary bladder. Methods SDC-1 levels were quantitated by enzyme-linked immunosorbent assay (ELISA) in 308 subjects (102 cancer subjects and 206 non-cancer subjects) to assess its diagnostic capabilities in voided urine. The performance of SDC-1 was evaluated using the area under the curve of a receiver operating characteristic curve. In addition, immunohistochemical (IHC) staining assessed SDC-1 protein expression in 193 bladder specimens (185 cancer subjects and 8 non-cancer subjects). Outcomes were correlated to SDC-1 levels. Results Mean urinary levels of SDC-1 did not differ between the cancer subjects and the non-cancer subjects, however, the mean urinary levels of SDC-1 were reduced in high-grade compared to low-grade disease (p < 0.0001), and in muscle invasive bladder cancer (MIBC) compared to non-muscle invasive bladder cancer (NMIBC) (p = 0.005). Correspondingly, preliminary data note a shift from a membranous cellular localization of SDC-1 in normal tissue, low-grade tumors and NMIBC, to a distinctly cytoplasmic localization in high-grade tumors and MIBC was observed in tissue specimens. Conclusion Alone urinary SDC-1 may not be a diagnostic biomarker for bladder cancer, but its urinary levels and cellular localization were associated with the differentiation status of patients with bladder tumors. Further studies are warranted to define the potential role for SDC-1 in bladder cancer progression.
Resumo:
Background To determine the diagnostic and prognostic capability of urinary and tumoral syndecan-1 (SDC-1) levels in patients with cancer of the urinary bladder. Methods SDC-1 levels were quantitated by enzyme-linked immunosorbent assay (ELISA) in 308 subjects (102 cancer subjects and 206 non-cancer subjects) to assess its diagnostic capabilities in voided urine. The performance of SDC-1 was evaluated using the area under the curve of a receiver operating characteristic curve. In addition, immunohistochemical (IHC) staining assessed SDC-1 protein expression in 193 bladder specimens (185 cancer subjects and 8 non-cancer subjects). Outcomes were correlated to SDC-1 levels. Results Mean urinary levels of SDC-1 did not differ between the cancer subjects and the non-cancer subjects, however, the mean urinary levels of SDC-1 were reduced in high-grade compared to low-grade disease (p < 0.0001), and in muscle invasive bladder cancer (MIBC) compared to non-muscle invasive bladder cancer (NMIBC) (p = 0.005). Correspondingly, preliminary data note a shift from a membranous cellular localization of SDC-1 in normal tissue, low-grade tumors and NMIBC, to a distinctly cytoplasmic localization in high-grade tumors and MIBC was observed in tissue specimens. Conclusion Alone urinary SDC-1 may not be a diagnostic biomarker for bladder cancer, but its urinary levels and cellular localization were associated with the differentiation status of patients with bladder tumors. Further studies are warranted to define the potential role for SDC-1 in bladder cancer progression.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.
Resumo:
Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown. Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed. This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may constitute a useful tool for studying the excreted strains, prevalence and transmission of these recently described polyomaviruses.
Resumo:
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but, instead, a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo Receptor complex and that their migration is blocked by Myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over Myelin. Our data relate the absence of traction force of OEC with lower migratory capacity, which correlates with changes in the F-Actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo Receptor inhibitor NEP1-40.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Resumo:
Background: None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. Methods: To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. Results: Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+). Conclusions: These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants.
Resumo:
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Resumo:
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Resumo:
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.