23 resultados para Cardiac involvement
Resumo:
A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. In native heart, pacing cells generate electrical stimuli that spread throughout the heartcausing cell membrane depolarization and activation of contractile apparatus. We ought to examine whether electricalstimulation of adipose tissue-derived progenitor cells (ATDPCs) exerts phenotypic and genetic changes that enhance theircardiomyogenic potential.
Resumo:
Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.
Resumo:
Objectives: The aim of the study was to combine clinical results from the European Cohort of the REVERSE study and costs associated with the addition of cardiac resynchronization therapy (CRT) to optimal medical therapy (OMT) in patients with mild symptomatic (NYHA I-II) or asymptomatic left ventricular dysfunction and markers of cardiac dyssynchrony in Spain. Methods: A Markov model was developed with CRT + OMT (CRT-ON) versus OMT only (CRT-OFF) based on a retrospective cost-effectiveness analysis. Raw data was derived from literature and expert opinion, reflecting clinical and economic consequences of patient"s management in Spain. Time horizon was 10 years. Both costs (euro 2010) and effects were discounted at 3 percent per annum. Results: CRT-ON showed higher total costs than CRT-OFF; however, CRT reduced the length of hospitalization in ICU by 94 percent (0.006 versus 0.091 days) and general ward in by 34 percent (0.705 versus 1.076 days). Surviving CRT-ON patients (88.2 percent versus 77.5 percent) remained in better functional class longer, and they achieved an improvement of 0.9 life years (LYGs) and 0.77 years quality-adjusted life years (QALYs). CRT-ON proved to be cost-effective after 6 years, except for the 7th year due to battery depletion. At 10 years, the results were 18,431 per LYG and 21,500 per QALY gained. Probabilistic sensitivity analysis showed CRT-ON was cost-effective in 75.4 percent of the cases at 10 years. Conclusions: The use of CRT added to OMT represents an efficient use of resources in patients suffering from heart failure in NYHA functional classes I and II.
Resumo:
Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous glycan. Mutants unable to produce WecP or Gne enzymes showed altered motility, and the study of their polar flagellin glycosylation showed that the patterns of glycosylation differed from that observed with wild type polar flagellin. This suggested the involvement of a lipid carrier in glycosylation. A gene coding for an enzyme linking sugar to a lipid carrier was identified in strain AH-3 (WecX) and subsequent mutation abolished completely motility, flagella production by EM, and flagellin glycosylation. This is the first report of a lipid carrier involved in flagella O-glycosylation. A molecular model has been proposed. The results obtained suggested that the N-acetylhexosamines are N-acetylgalactosamines and that the heptasaccharide is completely independent of the O34-antigen lipopolysaccharide. Furthermore, by comparing the mutants with differing degrees of polar flagellin glycosylation, we established their importance in A. hydrophila flagella formation and motility.
Resumo:
Early repolarization, which is characterized by an elevation of the J-point on 12-lead electrocardiography, is a common finding that has been considered as benign for decades. However, in the last years, it has been related with vulnerability to idiopathic ventricular fibrillation and with cardiac mortality in the general population. Recently, 4 potential ECG predictors that could differentiate the benign from the malignant form of early repolarization have been suggested. Any previous study about early repolarization has been done in Spain. Aim. To ascertain whether the presence of early repolarization pattern in a resting electrocardiogram is associated with a major risk of cardiac death in a Spanish general population and to determine whether the presence of potential predictors of malignancy in a resting electrocardiogram increases the risk of cardiac mortality in patients with early repolarization pattern. Methods. We will analyse the presence of early repolarization and the occurrence of cardiac mortality in a retrospective cohort study of 4,279 participants aged 25 to 74 years in the province of Girona. This cohort has been followed during a mean of 9.8 years. Early repolarization will be stratified according to the degree of J-point elevation (≥0.1 mV or ≥0.2 mV), the morphology of the J-wave (slurring, notching or any of these two), the ST-segment pattern (ascending or descending) and the localization (inferior leads, lateral leads, or both). Association of early repolarization with cardiac death will be assessed by adjusted Cox-proportional hazards models
Resumo:
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation
Resumo:
A prospective two dimensional and Doppler echocardiographic study of 70 consecutive patients with systemic lupus erythematosus (SLE) and 40 controls was carried out. Forty patients (57%) were found to have echocardiographic disturbance. Valvular abnormalities were detected in 31 patients (44%) and in only two controls (5%). Mitral valve abnormalities were the most common findings (23/70 (33%)) with mild or moderate regurgitation the most frequent lesion (16% and 9% respectively). Three patients (4%) had a morphological echocardiographic pattern suggestive of non-infective verrucous vegetations affecting the mitral valve. No patient had haemodynamically significant clinical valve disease. Pericardial effusion was identified in 19 patients (27%), of whom 14 had mild and clinically silent disease. Myocardial abnormalities were found in 14 patients (20%), but clinical features of myocardial dysfunction were present in only one. Patients with antiphospholipid antibodies were found to have an increased prevalence of endocardial lesions, mainly valvular regurgitation. It is concluded that the inclusion of echocardiography in a study protocol of patients with SLE can identify an important subset of patients with cardiac abnormalities, many of which are clinically silent. In addition, the association of antiphospholipid antibodies with endocardial lesions suggests that these antibodies may have a prominent role in the pathogenetic mechanisms of heart valve disease in SLE.
Resumo:
A prospective two dimensional and Doppler echocardiographic study of 70 consecutive patients with systemic lupus erythematosus (SLE) and 40 controls was carried out. Forty patients (57%) were found to have echocardiographic disturbance. Valvular abnormalities were detected in 31 patients (44%) and in only two controls (5%). Mitral valve abnormalities were the most common findings (23/70 (33%)) with mild or moderate regurgitation the most frequent lesion (16% and 9% respectively). Three patients (4%) had a morphological echocardiographic pattern suggestive of non-infective verrucous vegetations affecting the mitral valve. No patient had haemodynamically significant clinical valve disease. Pericardial effusion was identified in 19 patients (27%), of whom 14 had mild and clinically silent disease. Myocardial abnormalities were found in 14 patients (20%), but clinical features of myocardial dysfunction were present in only one. Patients with antiphospholipid antibodies were found to have an increased prevalence of endocardial lesions, mainly valvular regurgitation. It is concluded that the inclusion of echocardiography in a study protocol of patients with SLE can identify an important subset of patients with cardiac abnormalities, many of which are clinically silent. In addition, the association of antiphospholipid antibodies with endocardial lesions suggests that these antibodies may have a prominent role in the pathogenetic mechanisms of heart valve disease in SLE.