31 resultados para CRYSTAL-NUCLEATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question addressed in this paper is that of the influence of the density of dislocations on the spin tunneling in Mn12 clusters. We have determined the variation in the mosaicity of fresh and thermally treated single crystals of Mn12 by analyzing the widening of low angle x-ray diffraction peaks. It has also been well established from both isothermal magnetization and relaxation experiments that there is a broad distribution of tunneling rates which is shifted to higher rates when the density of dislocations increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the key topics of one of the areas with the biggest impact of the last years in the chemical and pharmaceutical industry that is Crystal Engineering. The relevance of polymorphs and co-crystals from different points of view is been highlighted and broadly illustrated by means of several recent examples of studies carried out in this field. In addition, the most suitableinstrumental techniques and the intellectual property implications are reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the nucleation and the physical properties of a -1/2 wedge disclination line near the free surface of a confined nematic liquid crystal. The position of the disclination line has been related to the material parameters (elastic constants, anchoring energy, and favored anchoring angle of the molecules at the free surface). The use of a planar model for the structure of the director field (whose predictions have been contrasted to those of a fully three-dimensional model) has allowed us to relate the experimentally observed position of the disclination line to the relevant properties of the liquid crystals. In particular, we have been able to observe the collapse of the disclination line due to a temperature-induced anchoring-angle transition, which has allowed us to rule out the presence of a real disclination line near the nematic/isotropic front in directional growth experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed colloidal crystals based on silica sub-micrometric particles were synthesized using the Stöber-Fink-Bohn process. The control of nucleation and coalescence result in improved characteristics such as high sphericity and very low size dispersion. The resulting silica particles show characteristics suitable for self-assembling across large areas of closely-packed 2D crystal monolayers by an accurate Langmuir-Blodgett deposition process on glass, fused silica and silicon substrates. Due to their special optical properties, colloidal films have potential applications in fields including photonics, electronics, electro-optics, medicine (detectors and sensors), membrane filters and surface devices. The deposited monolayers of silica particles were characterized by means of FESEM, AFM and optical transmittance measurements in order to analyze their specific properties and characteristics. We propose a theoretical calculation for the photonic band gaps in 2D systems using an extrapolation of the photonic behavior of the crystal from 3D to 2D. In this work we show that the methodology used and the conditions in self-assembly processes are decisive for producing high-quality two-dimensional colloidal crystals by the Langmuir-Blodgett technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new phenomenological approach to nucleation, based on the combination of the extended modified liquid drop model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the pressure of a chemically inert carrier gas on the nucleation rate is one of the biggest puzzles in the research of gas-liquid nucleation. Experiments can show a positive effect, a negative effect, or no effect at all. The same experiment may show both trends for the same substance depending on temperature, or for different substances at the same temperature. We show how this ambiguous effect naturally arises from the competition of two contributions: nonisothermal effects and pressure-volume work. Our model clarifies seemingly contradictory experimental results and quantifies the variation of the nucleation ability of a substance in the presence of an ambient gas. Our findings are corroborated by molecular dynamics simulations and might have important implications since nucleation in experiments, technical applications, and nature practically always occurs in the presence of an ambient gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a‐Si:H films are deposited by plasma‐enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c‐Si) substrates. The deposition of a‐Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a‐Si:H are obtained. The nucleation mechanism on metal and c‐Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a‐Si:H on both substrates. The bulk a‐Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a‐Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation‐coalescence phase is found lower in the case of c‐Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c‐Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin‐film growth, but also to monitor the preparation of complex structures on a few monolayers scale.