30 resultados para Brain ischemia and reperfusion
Resumo:
About 85% of multiple sclerosis (MS) cases start as clinically isolated syndrome (CIS).When patients present with a CIS, clinicians face with many questions, most of themrelated with prognosis and treatment. Thereby, patients with CIS have been focus ofresearch. Several studies have demonstrated a relationship between positive IgM lipidspecific oligoclonal band pattern in CSF and higher lesion load on MRI brain scan, higher number of relapses and greater disability, even at the first stages of the disease. On the other hand, no studies have used this previous evidence to treat with more aggressive disease modifying therapy in initial stages of disease course to prevent the earlier axonal damage. The aim of this study is to assess the most effective approved treatment for MS and current therapy for CIS patients presenting high risk to develop CDMS and with biomarkers of poor prognosis. Among this group of patients any disease activity will eventually lead to disability. Therefore, the earlier the treatment is initiated, the more effective to prevent disability will be. It is considered that “time lost is brain lost” and since once damage is established, there is no therapy to be regained later on. In this phase III clinical trial, 172 patients will be randomized 1:1 to receive Interferon β-1b or natalizumab over 96 weeks. Time to develop clinical definitive multiple sclerosis (CDMS) will be included as primary endpoint. Other secondary endpoints will include clinical data, magnetic resonance imaging (MRI) measurements and quality of life tests
Resumo:
About 85% of multiple sclerosis (MS) cases start as clinically isolated syndrome (CIS).When patients present with a CIS, clinicians face with many questions, most of themrelated with prognosis and treatment. Thereby, patients with CIS have been focus ofresearch. Several studies have demonstrated a relationship between positive IgM lipidspecific oligoclonal band pattern in CSF and higher lesion load on MRI brain scan, higher number of relapses and greater disability, even at the first stages of the disease. On the other hand, no studies have used this previous evidence to treat with more aggressive disease modifying therapy in initial stages of disease course to prevent the earlier axonal damage. The aim of this study is to assess the most effective approved treatment for MS and current therapy for CIS patients presenting high risk to develop CDMS and with biomarkers of poor prognosis. Among this group of patients any disease activity will eventually lead to disability. Therefore, the earlier the treatment is initiated, the more effective to prevent disability will be. It is considered that “time lost is brain lost” and since once damage is established, there is no therapy to be regained later on. In this phase III clinical trial, 172 patients will be randomized 1:1 to receive Interferon β-1b or natalizumab over 96 weeks. Time to develop clinical definitive multiple sclerosis (CDMS) will be included as primary endpoint. Other secondary endpoints will include clinical data, magnetic resonance imaging (MRI) measurements and quality of life tests
Resumo:
Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.
Resumo:
Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.
Resumo:
Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.
Resumo:
Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male SpragueDawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokineticpharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Resumo:
During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.
Resumo:
Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized"default-mode network" (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.
Resumo:
Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.
Resumo:
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Resumo:
Material and methods. Methylone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (15 and 30 mg/kg). Plasma concentrations and metabolites were characterized by LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results. Oral administration of methylone induced a dose-dependent increase in locomotor activity in rats. The plasma concentrations after i.v. administration were described by a two-compartment model with distribution and terminal elimination phases of α = 1.95 h− 1 and β = 0.72 h− 1. For oral administration, peak methylone concentrations were achieved between 0.5 and 1 h and fitted to a flip-flop model. Absolute bioavailability was about 80% and the percentage of methylone protein binding was of 30%. A relationship between methylone brain levels and free plasma concentration yielded a ratio of 1.42 ± 0.06, indicating access to the central nervous system. We have identified four Phase I metabolites after oral administration. The major metabolic routes are N-demethylation, aliphatic hydroxylation and O-methylation of a demethylenate intermediate. Discussion. Pharmacokinetic and pharmacodynamic analysis of methylone showed a correlation between plasma concentrations and enhancement of the locomotor activity. A contribution of metabolites in the activity of methylone after oral administration is suggested. Present results will be helpful to understand the time course of the effects of this drug of abuse in humans.
Resumo:
Material and methods. Methylone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (15 and 30 mg/kg). Plasma concentrations and metabolites were characterized by LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results. Oral administration of methylone induced a dose-dependent increase in locomotor activity in rats. The plasma concentrations after i.v. administration were described by a two-compartment model with distribution and terminal elimination phases of α = 1.95 h− 1 and β = 0.72 h− 1. For oral administration, peak methylone concentrations were achieved between 0.5 and 1 h and fitted to a flip-flop model. Absolute bioavailability was about 80% and the percentage of methylone protein binding was of 30%. A relationship between methylone brain levels and free plasma concentration yielded a ratio of 1.42 ± 0.06, indicating access to the central nervous system. We have identified four Phase I metabolites after oral administration. The major metabolic routes are N-demethylation, aliphatic hydroxylation and O-methylation of a demethylenate intermediate. Discussion. Pharmacokinetic and pharmacodynamic analysis of methylone showed a correlation between plasma concentrations and enhancement of the locomotor activity. A contribution of metabolites in the activity of methylone after oral administration is suggested. Present results will be helpful to understand the time course of the effects of this drug of abuse in humans.
Resumo:
Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Resumo:
Background: Neonatal brain injuries are the main cause of visual deficit produced by damage to posterior visual pathways.While there are several studies of visual function in low-risk preterm infants or older children with brain injuries, research in children of early age is lacking. Aim: To assess several aspects of visual function in preterm infants with brain injuries and to compare them with another group of low-risk preterm infants of the same age. Study design and subjects: Forty-eight preterm infants with brain injuries and 56 low-risk preterm infants. Outcome measures: The ML Leonhardt Battery of Optotypes was used to assess visual functions. This test was previously validated at a post-menstrual age of 40 weeks in newborns and at 30-plus weeks in preterm infants. Results: The group of preterminfants with brain lesions showed a delayed pattern of visual functions in alertness, fixation, visual attention and tracking behavior compared to infants in the healthy preterm group. The differences between both groups, in the visual behaviors analyzed were around 30%. These visual functions could be identified from the first weeks of life. Conclusion: Our results confirm the importance of using a straightforward screening test with preterminfants in order to assess altered visual function, especially in infants with brain injuries. The findings also highlight the need to provide visual stimulation very early on in life.
Resumo:
The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.