26 resultados para Bird Ecology
Resumo:
We presented a bird-monitoring database inMediterranean landscapes (Catalonia, NE Spain) affected by wildfires and we evaluated: 1) the spatial and temporal variability in the bird community composition and 2) the influence of pre-fire habitat configuration in the composition of bird communities. The DINDIS database results fromthemonitoring of bird communities occupying all areas affected by large wildfires in Catalonia since 2000.We used bird surveys conducted from 2006 to 2009 and performed a principal components analysis to describe two main gradients of variation in the composition of bird communities, which were used as descriptors of bird communities in subsequent analyses. We then analysed the relationships of these community descriptors with bioclimatic regions within Catalonia, time since fire and pre-fire vegetation (forest or shrubland).We have conducted 1,918 bird surveys in 567 transects distributed in 56 burnt areas. Eight out of the twenty most common detected species have an unfavourable conservation status, most of them being associated to open-habitats. Both bird communities’ descriptors had a strong regional component and were related to pre-fire vegetation, and to a lesser extent to the time since fire.We came to the conclusion that the responses of bird communities to wildfires are heterogeneous, complex and context dependent. Large-scale monitoring datasets, such as DINDIS, might allow identifying factors acting at different spatial and temporal scales that affect the dynamics of species and communities, giving additional information on the causes under general trends observed using other monitoring systems
Resumo:
Trophic ecology and movements are critical issues for understanding the role of marine predators in food webs and for facing the challenges of their conservation. Seabird foraging ecology has been increasingly studied, but small elusive species, such as those forming the"little shearwater" complex, remain poorly known. We present the first study on the movements and feeding ecology of the Barolo shearwater Puffinus baroli baroli in a colony from the Azores archipelago (NE Atlantic), combining global location-sensing units, stable isotope analyses of feathers (δ13C and δ15N), stomach flushings and data from maximum depth gauges. During the chick-rearing period, parents visited their nests most nights, foraged mainly south of the colony and fed at lower trophic levels than during the non-breeding period. Squid was the most diverse prey (6 families and at least 10 different taxa), but species composition varied considerably between years. Two squid families, Onychoteuthidae and Argonautidae, and the fish family Phycidae accounted for 82.3% of ingested prey by number. On average, maximum dive depths per foraging trip reached 14.8 m (range: 7.9 to 23.1 m). After the breeding period, birds dispersed offshore in all directions and up to 2500 km from the breeding colony, and fed at higher trophic levels. Overall, our results indicate that the Barolo shearwater is a non-migratory shearwater feeding at the lowest trophic level among Macaronesian seabirds, showing both diurnal and nocturnal activity and feeding deeper in the water column, principally on small schooling squid and fish. These traits contrast with those of 3 other Azorean Procellariiformes (Cory"s shearwater Calonectris diomedea, the Madeiran storm-petrel Oceanodroma castro and Monteiro"s storm-petrel O. monteiroi), indicating ecological segregation within the Azorean seabird community.
Resumo:
In birds, parents adjust their feeding behaviour according to breeding duties, which ultimately may lead to seasonal adjustments in nutritional physiology and hematology over the breeding season. Although avian physiology has been widely investigated in captivity, few studies have integrated individual changes in feeding and physiological ecology throughout the breeding season in wild birds. To study relationships between feeding ecology and nutritional ecophysiology in Cory"s shearwater Calonectris diomedea, we weighed and took blood samples from 28 males and 19 females during the pre-laying, egg-laying, incubation, hatching and chick-rearing periods of the breeding season. In addition, we fitted 6 birds with geolocators to track their foraging movements throughout the reproductive period. Thus, we examined individual changes in (1) nutritional condition (biochemistry metabolites); (2) oxygen carrying capacity (hematology); and (3) feeding areas and foraging effort (stable isotopes and foraging movements). Geolocators revealed a latitudinal shift in main feeding areas towards more southern and more neritic waters throughout the breeding season, which is consistent with the steady increase in δ13C signatures in the blood. Geolocators also showed a decrease in foraging effort from egg-laying to hatching, reflecting the activity decrease associated with incubation duties. Plasma metabolites, body mass and oxygen carrying capacity were associated with temporal changes in nutritional state and foraging effort in relation to recovery after migration, egg formation, fasting shifts during incubation and chick provisioning. This study shows that combining physiological and ecological approaches can help us understand the influence of breeding duties on feeding ecology and nutritional physiology in wild birds.
Resumo:
Interbreeding of two species in the wild implies introgression of alleles from one species into the other only when admixed individuals survive and successfully backcross with the parental species. Consequently, estimating the proportion of first generation hybrids in a population may not inform about the evolutionary impact of hybridization. Samples obtained over a long time span may offer a more accurate view of the spreading of introgressed alleles in a species" gene pool. Common quail (Coturnix coturnix) populations in Europe have been restocked extensively with farm quails of hybrid origin (crosses with Japanese quails, C. japonica). We genetically monitored a common quail population over 15 years to investigate whether genetic introgression is occurring and used simulations to investigate our power to detect it. Our results revealed that some introgression has occurred, but we did not observe a significant increase over time in the proportion of admixed individuals. However, simulations showed that the degree of admixture may be larger than anticipated due to the limited power of analyses over a short time span, and that observed data was compatible with a low rate of introgression, probably resulting from reduced fitness of admixed individuals. Simulations predicted this could result in extensive admixture in the near future.
Resumo:
We investigated trophic ecology variation among colonies as well as sex- and age-related differences in the diet of the southern giant petrel Macronectes giganteus, a long-lived seabird that is sexually dimorphic in size. We measured stable isotopes (δ13C, δ15N) in blood samples collected during breeding at Bird Island (South Georgia, Antarctica) in 1998 and at 2 colonies in the Argentinean area of Patagonia in 2000 and 2001. Individuals from South Georgia showed lower δ13C and δ15N values than those in Patagonia, as expected from the more pelagic location and the short length of the Antarctic food web. Males and females showed significant differences in the isotopic signatures at both localities. These differences agree with the sexual differences in diet found in previous studies, which showed that both sexes rely mainly on penguin and seal carrion, but females also feed extensively on marine prey, such as fish, squid and crustaceans. However, males from Patagonia showed significantly higher δ15N and δ13C values than females did, and the reverse trend was observed at South Georgia. This opposite trend is probably related to the different trophic level of carrion between locations: whereas penguins and pinnipeds in Patagonia rely mainly on fish and cephalopods, in South Georgia they rely mainly on krill. Stable isotope values of male and female chicks in Patagonia did not differ; both attained high values, similar to adult males and higher than adult females, suggesting that parents do not provision their single offspring differently in relation to sex; however, they seem to provide offspring with a higher proportion of carrion, probably of higher quality, and more abundant food, than they consume themselves. Stable isotopes at South Georgia were not affected by age of adults. We have provided new information on intraspecific segregation in the diet in a seabird species and have also underlined the importance of considering food web structure when studying intraspecific variability in trophic ecology.
Resumo:
We analysed concentrations of cadmium, lead, mercury and selenium in blood from males and females of the 2 sibling species of giant petrels, the northern Macronectes halli and the southern M. giganteus, breeding sympatrically at Bird Island (South Georgia, Antarctica). Blood samples were collected in 1998 during the incubation period, from 5 November to 10 December. Between species, cadmium and lead concentrations were significantly higher for northern than for southern giant petrels, which probably resulted from northern giant petrels wintering in more polluted areas (mainly on the Patagonian Shelf and Falkland Islands) compared to southern giant petrels (wintering mainly around South Georgia and the South Sandwich Islands). Between sexes, cadmium concentrations were significantly higher for females than for males in both species, corresponding to the more pelagic habits of females compared to the more scavenging habits of males. Lead and cadmium concentrations in circulating blood decreased significantly over the incubation period, suggesting that when breeding at Bird Island, exposure to the source of pollution had ended, and these metals had been cleared from the blood and excreted, or rapidly transferred to other tissues. Association of lead and cadmium with a common source of pollution was further corroborated by a significant positive correlation between the levels of the 2 elements found. Mercury levels were similar between the species, but showed an opposite trend between sexes, with males showing higher levels than females in northern giant petrels, and the opposite was true in southern giant petrels, with no changes throughout incubation. Selenium levels were similar between sexes, but significantly greater for northern than for southern giant petrels. Moreover, there was a significant increase in the selenium levels over the incubation period in northern giant petrels. Age of adult birds did not affect metal concentrations. Coefficients of variation of metal levels were consistently lower for northern than for southern giant petrels, particularly for mercury, suggesting that the former species is more dietary specialised than the latter. Contaminant analyses, when combined with accurate information on seabird movements, obtained through geolocation or satellite tracking, help us to understand geographic variation of pollution in the marine environment.
Resumo:
We studied the mercury contamination of 13 species of seabirds breeding on Bird Island, South Georgia, in 1998. Total mercury concentrations in body feather samples of birds caught at their breeding colonies were determined. Among the species, grey-headed albatross (8933 ng g-1) and southern giant petrel (7774 ng g-1) showed the highest, and gentoo penguin (948 ng g-1) the lowest body feather mercury concentrations. Mercury levels were negatively correlated with the proportion of crustaceans (mainly krill) in the species¹ diets, suggesting that the trophic level is the most important factor in explaining the variation of mercury concentrations in Antarctic seabirds. In 4 species studied for age effects among adult birds (grey-headed and black-browed albatross, northern and southern giant petrel), no age-dependent variation in mercury levels was found. Sex differences were also assessed: female gentoo penguins had lower mercury levels than males, which may be related to the elimination of part of the mercury body burden by females into eggs. In contrast, northern giant petrel males had lower levels than females, which may be related to a higher consumption by males of carrion from Antarctic fur seals. In grey-headed albatrosses, mercury levels were 113% higher than in 1989, when this species was investigated at the same site, indicating a possible increase in mercury pollution of the Southern Ocean during the last decade.
Resumo:
Understanding how marine predators interact is a scientific challenge. In marine ecosystems, segregation in feeding habits has been largely described as a common mechanism to allow the coexistence of several competing marine predators. However, little is known about the feeding ecology of most species of chondrichthyans, which play a pivotal role in the structure of marine food webs worldwide. In this study, we examined the trophic ecology of 3 relatively abundant chondrichthyans coexisting in the Mediterranean Sea: the blackmouth catshark Galeus melastomus , the velvet belly lanternshark Etmopterus spinax and the rabbit fish Chimaera monstrosa. To examine their trophic ecology and interspecific differences in food habits, we combined the analysis of stomach content and stable isotopes. Our results highlighted a trophic segregation between C. monstrosa and the other 2 species. G. melastomus showed a diet composed mainly of cephalopods, while E. spinax preyed mainly on shrimps and C. monstrosa on crabs. Interspecific differences in the trophic niche were likely due to different feeding capabilities and body size. Each species showed different isotopic niche space and trophic level. Specifically, C. monstrosa showed a higher trophic level than E. spinax and G. melastomus. The high trophic levels of the 3 species highlighted their important role as predators in the marine food web. Our results illustrate the utility of using complementary approaches that provide information about the feeding behaviour at short (stomach content) and long-term scales (stable isotopes), which could allow more efficient monitoring of marine food-web changes in the study area.
Resumo:
Salvage logging is a common practice carried out in burned forests worldwide, and intended to mitigate the economic losses caused by wildfires. Logging implies an additional disturbance occurring shortly after fire, although its ecological effects can be somewhat mitigated by leaving wood debris on site. The composition of the bird community and its capacity to provide ecosystem services such as seed dispersal offleshy-fruited plants have been shown to be affected by postfire logging. We assessedthe effects of the habitat structure resulting from different postfire management practices on the bird community, in three burned pine forests in Catalonia (western Mediterranean). For this purpose, we focused on the group of species that is responsible for seed dispersal, a process which takes place primarily during the winter in theMediterranean basin. In addition, we assessed microhabitat selection by seed disperser birds in such environments in relation to management practices. Our results showed a significant, positive relationship between the density of wood debris piles and the abundance of seed disperser birds. Furthermore, such piles were the preferredmicrohabitat of these species. This reveals an important effect of forest management on seed disperser birds, which is likely to affect the dynamics of bird-dependent seed dispersal. Thus, building wood debris piles can be a useful practice for the conservation of both the species and their ecosystem services, while also being compatible with timber harvesting
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration