36 resultados para Bio-inspired navigation
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
Seafloor imagery is a rich source of data for the study of biological and geological processes. Among several applications, still images of the ocean floor can be used to build image composites referred to as photo-mosaics. Photo-mosaics provide a wide-area visual representation of the benthos, and enable applications as diverse as geological surveys, mapping and detection of temporal changes in the morphology of biodiversity. We present an approach for creating globally aligned photo-mosaics using 3D position estimates provided by navigation sensors available in deep water surveys. Without image registration, such navigation data does not provide enough accuracy to produce useful composite images. Results from a challenging data set of the Lucky Strike vent field at the Mid Atlantic Ridge are reported
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasinglypopular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigationaladaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.
Resumo:
The bio-economic model "Heures" is a first attempt to develop a simulation procedure to understand the Northwestern Mediterranean fisheries, to evaluate management strategies and to analyze the feasibility of implementing an adaptative management. The model is built on the interaction among three boxes simulating the dynamics of each of the basic actors of a fishery: the stock, the market and the fishermen. A fourth actor, the manager, imposes or modifies the rules, or, in terms of the model, modifies some particular parameters. Thus, the model allows us to simulate and evaluate the mid-term biologic and economic effects of particular management measures. The bio-economic nature of the model is given by the interaction among the three boxes, by the market simulation and, particularly, by the fishermen behaviour. This last element confers to the model its Mediterranean"selfregulated" character. The fishermen allocate their investments to maximize fishing mortality but, having a legal effort limit, they invest in maintenance and technology in order to increase the catchability, which, as a consequence. will be function of the invested capital.
Resumo:
This paper describes the result of a research about diverse areas of the information technology world applied to cartography. Its final result is a complete and custom geographic information web system, designed and implemented to manage archaeological information of the city of Tarragona. The goal of the platform is to show on a web-focused application geographical and alphanumerical data and to provide concrete queries to explorate this. Various tools, between others, have been used: the PostgreSQL database management system in conjunction with its geographical extension PostGIS, the geographic server GeoServer, the GeoWebCache tile caching, the maps viewer and maps and satellite imagery from Google Maps, locations imagery from Google Street View, and other open source libraries. The technology has been chosen from an investigation of the requirements of the project, and has taken great part of its development. Except from the Google Maps tools which are not open source but are free, all design has been implemented with open source and free tools.
Resumo:
Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position
Resumo:
Crops and forests are already responding to rising atmospheric carbon dioxide and air temperatures. Increasing atmospheric CO2 concentrations are expected to enhance plant photosynthesis. Nevertheless, after long-term exposure, plants acclimate and show a reduction in photosynthetic activity (i.e. down-regulation). If in the future the Earth"s temperature is allowed to rise further, plant ecosystems and food security will both face significant threats. The scientific community has recognized that an increase in global temperatures should remain below 2°C in order to combat climate change. All this evidence suggests that, in parallel with reductions in CO2 emissions, a more direct approach to mitigate global warming should be considered. We propose here that global warming could be partially mitigated directly through local bio-geoengineering approaches. For example, this could be done through the management of solar radiation at surface level, i.e. by increasing global albedo. Such an effect has been documented in the south-eastern part of Spain, where a significant surface air temperature trend of -0.3°C per decade has been observed due to a dramatic expansion of greenhouse horticulture.