187 resultados para Billes magnétiques
Resumo:
Algunes nanotècniques recents permeten la manipulació de biomolècules i cèl·lules en escala nanomètrica amb la mesura simultània de la força aplicada amb resolució de piconewtons. Aquestes escales de desplaçament i força, i la possibilitat de treballar en medi líquid, fan que siguin eines molt útils per a l'estudi de les propietats mecàniques de molècules i cèl·lules individuals en condicions fisiològiques. Entre les tècniques més utilitzades es troben el microscopi de força atòmica, les trampes de làser i les microesferes magnètiques. En aquest treball es descriuen els principis de funcionament d'aquestes tècniques en aplicacions biològiques i, en particular, en l'estudi de la mecànica molecular i cel·lular.
Resumo:
Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.
Resumo:
The distribution of Sn4+ cations within the five crystallographic sites of the magnetoplumbite (M) ‐like compound BaFe12−2xCoxSnxO19 has been analyzed using single‐crystal x‐ray‐diffraction data. The species Fe3+ and Co2+ cannot be distinguished using x rays because of their very similar atomic numbers; however, the calculation of the apparent valencies for the different sites allows an insight into the Co2+ cation segregation. The use of previous data from neutron powder diffraction allows a precise picture of the cation distribution, which indicates a pronounced site selectivity for both Sn4+ and Co2+ cations. The Sn4+ cations prefer the 4f2 sites and to a much lower extent the 12k sites, while they do not enter the octahedral 2a sites at all. Co2+ cations are distributed among tetrahedral and octahedral sites displaying a clear preference for the tetrahedral 4f1 sites. Magnetic measurements indicate that the compound still exhibits uniaxial anisotropy with the easy direction parallel to the c axis. Nevertheless, the magnetic structure shows a considerable degree of noncolinearity. A strong reduction of the magnetic anisotropy regarding that of the undoped compound is also detected.
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.
Resumo:
La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.
Resumo:
Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.
Resumo:
We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.
Resumo:
Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes.
Resumo:
A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.
Resumo:
Nitrogen incorporates into Fe thin films during reactively sputtered TiN capping layer deposition. The influence that this nitrogen incorporation has both on the structure and magnetic properties is discussed for a series of Fe~001! thin films grown at different temperatures. A higher nitrogen content is accompanied by distortion in the Fe lattice and by reduction in the Fe magnetization saturation as well as in the effective anisotropy constant, K. The reduction of K brings as a consequence lowering in the coercive field with respect to equivalent Fe films with no nitrogen present.
Resumo:
Epitaxial Fe/MgO heterostructures have been grown on Si(001) by a combination of sputtering and laser ablation deposition techniques. The growth of MgO on Si(001) is mainly determined by the nature of the interface, with large lattice mismatch and the presence of an amorphous layer of unclear origin. Reflection high energy electron diffraction patterns of this MgO buffer layer are characteristic of an epitaxial, but disordered, structure. The structural quality of subsequent Fe and MgO layers continuously improves due to the better lattice match and the burial of defects. A weak uniaxial in-plane magnetic anisotropy is found superimposed on the expected cubic biaxial anisotropy. This additional anisotropy, of interfacial nature and often found in Fe/MgO and Fe/MgO/GaAs(001) systems, is less intense here due to the poorer MgO/Si interface quality compared with that of other systems. From the evolution of the anisotropy field with film thickness, magnetic anisotropy is also found to depend on the crystal quality. Kerr measurements of a Fe/MgO multilayered structure grown on Si show two different switching fields, suggesting magnetic coupling of two of the three Fe layers. Nevertheless, due to the little sensitivity to the bottom Fe film, independent switching of the three layers cannot be ruled out.