24 resultados para Autosomal recessive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies over the last few years have shown that newly arising (de novo) mutations contribute to the genetics of schizophrenia (SZ), autism (ASD) and other developmental disorders. The strongest evidence comes from studies of de novo Copy Number Variation (CNV), where the rate of new mutations is shown to be increased in cases when compared to controls [23, 24]. Research on de novo point mutations and small insertion-deletions (indels) has been more limited, but with the development of next-generation sequencing (NGS) technology, such studies are beginning to provide preliminary evidence that de novo single-nucleotide mutations (SNVs) might also increase risk of SZ and ASD [25, 26] Advanced paternal age is a major source of new mutations in human beings [27] and could thus be associated with increased risk for developing SZ, ASD or other developmental disorders. Indeed, advanced paternal age is found to be a risk factor for developing SZ and ASD in the offspring [28, 29] and new mutations related to advanced paternal age have been implicated as a cause of sporadic cases in several autosomal dominant diseases, some neurodevelopmental diseases, including SZ and ASD, and social functioning. New single-base substitutions occur at higher rates at males compared to females and this difference increases with paternal age. This is due to the fact that sperm cells go through a much higher number of cell divisions (~840 by the age of 50), which increases the risk for DNA copy errors in the male germ line [30] . By contrast, the female eggs (oocytes) undergo only 24 cell divisions and all but the last occur during foetal life. The aim of my project is to determine the parent-of-origin of de novo SNVs, using large samples of parent-offspring trios affected with schizophrenia (SZ). From whole exome sequencing of 618 Bulgarian proband-offspring trios affected, nearly 1000 de novo (SNVs or small indels) have been identified and from these, the parent-of-origin of at least 60% of the mutations (N=600) can be established. This project is contained in a main one that consists on the determination of the parental origin of different types of de novo mutations (SNVs, small indels and large CNVs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberous sclerosis (TS) or Bourneville"s disease is a rare, multisystemic genetic disorder. It involves alterations to ectodermal and mesodermal cell differentiation and proliferation, causing benign hamartomatous tumors, neurofibromas and angiofibromas in the brain and other vital organs including the kidney, heart, eyes, lungs, skin and mucosa. It also affects the central nervous system and produces neurological dysfunctions such as seizures, mental retardation and behavior disorders. Tuberous (rootshaped) growths develop in the brain, and calcify over time, becoming hard and sclerotic, hence the name given to the disease. Although inheritance is autosomal dominant, 60-70% of cases occur through spontaneous mutations. The disease is related to some mutations or alterations in two genes, named TSC1 and TSC2. Discovered in 1997, TSC1 is located on chromosome 9q34 and produces a protein called hamartin. TSC2, discovered in 1993, is located on chromosome 16p13 and produces a protein called tuberin. The prevalence of the disease is 1/6000-10,000 live newborns, and it is estimated that there are 1-2 million sufferers worldwide. This paper presents a literature review and a family case report of a mother and two of her daughters with oral features of TS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Wolfram syndrome is a degenerative, recessive rare disease with an onset in childhood. It is caused by mutations in WFS1 or CISD2 genes. More than 200 different variations in WFS1 have been described in patients with Wolfram syndrome, which complicates the establishment of clear genotype-phenotype correlation. The purpose of this study was to elucidate the role of WFS1 mutations and update the natural history of the disease. Methods: This study analyzed clinical and genetic data of 412 patients with Wolfram syndrome published in the last 15 years. Results: (i) 15% of published patients do not fulfill the current ­inclusion criterion; (ii) genotypic prevalence differences may exist among countries; (iii) diabetes mellitus and optic atrophy might not be the first two clinical features in some patients; (iv) mutations are nonuniformly distributed in WFS1; (v) age at onset of diabetes mellitus, hearing defects, and diabetes insipidus may depend on the patient"s genotypic class; and (vi) disease progression rate might depend on genotypic class. Conclusion: New genotype-phenotype correlations were established, disease progression rate for the general population and for the genotypic classes has been calculated, and new diagnostic criteria have been proposed. The conclusions raised could be important for patient management and counseling as well as for the development of treatments for Wolfram syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanisms underlying speciation in plants include detrimental (incompatible) genetic interactions between parental alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana strain from Poland, Landsberg erecta (Ler), and many Central Asian A. thaliana strains. The incompatible interaction is determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL) RPP1 (Recognition of Peronospora parasitica1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3 (SRF3) in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like Ler (R1R8) genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3 overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like alleles in a local population in Gorzów Wielkopolski (Poland). Only Gorzów individuals carrying the RPP1-like Ler haplotype are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of forces shaping the evolution of RPP1-like genes at local and regional population scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peutz¿Jeghers syndrome (PJS, MIM175200) is an autosomal dominant condition defined by the development of characteristic polyps throughout the gastrointestinal tract and mucocutaneous pigmentation. The majority of patients that meet the clinical diagnostic criteria have a causative mutation in the STK11 gene, which is located at 19p13.3. The cancer risks in this condition are substantial, particularly for breast and gastrointestinal cancer, although ascertainment and publication bias may have led to overestimates in some publications. Current surveillance protocols are controversial and not evidence-based, due to the relative rarity of the condition. Initially, endoscopies are more likely to be done to detect polyps that may be a risk for future intussusception or obstruction rather than cancers, but surveillance for the various cancers for which these patients are susceptible is an important part of their later management. This review assesses the current literature on the clinical features and management of the condition, genotype¿phenotype studies, and suggested guidelines for surveillance and management of individuals with PJS. The proposed guidelines contained in this article have been produced as a consensus statement on behalf of a group of European experts who met in Mallorca in 2007 and who have produced guidelines on the clinical management of Lynch syndrome and familial adenomatous polyposis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.