17 resultados para Atypical
Resumo:
Brain-derived neurotrophic factor (BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.
Resumo:
BACKGROUND: With many atypical antipsychotics now available in the market, it has become a common clinical practice to switch between atypical agents as a means of achieving the best clinical outcomes. This study aimed to examine the impact of switching from olanzapine to risperidone and vice versa on clinical status and tolerability outcomes in outpatients with schizophrenia in a naturalistic setting. METHODS: W-SOHO was a 3-year observational study that involved over 17,000 outpatients with schizophrenia from 37 countries worldwide. The present post hoc study focused on the subgroup of patients who started taking olanzapine at baseline and subsequently made the first switch to risperidone (n=162) and vice versa (n=136). Clinical status was assessed at the visit when the first switch was made (i.e. before switching) and after switching. Logistic regression models examined the impact of medication switch on tolerability outcomes, and linear regression models assessed the association between medication switch and change in the Clinical Global Impression-Schizophrenia (CGI-SCH) overall score or change in weight. In addition, Kaplan-Meier survival curves and Cox-proportional hazards models were used to analyze the time to medication switch as well as time to relapse (symptom worsening as assessed by the CGI-SCH scale or hospitalization). RESULTS: 48% and 39% of patients switching to olanzapine and risperidone, respectively, remained on the medication without further switches (p=0.019). Patients switching to olanzapine were significantly less likely to experience relapse (hazard ratio: 3.43, 95% CI: 1.43, 8.26), extrapyramidal symptoms (odds ratio [OR]: 4.02, 95% CI: 1.49, 10.89) and amenorrhea/galactorrhea (OR: 8.99, 95% CI: 2.30, 35.13). No significant difference in weight change was, however, found between the two groups. While the CGI-SCH overall score improved in both groups after switching, there was a significantly greater change in those who switched to olanzapine (difference of 0.29 points, p=0.013). CONCLUSION: Our study showed that patients who switched from risperidone to olanzapine were likely to experience a more favorable treatment course than those who switched from olanzapine to risperidone. Given the nature of observational study design and small sample size, additional studies are warranted.