20 resultados para Anopheline vectors
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developedto explore patterns in high-dimensional multivariate data. The conventional versionof the algorithm involves the use of Euclidean metric in the process of adaptation ofthe model vectors, thus rendering in theory a whole methodology incompatible withnon-Euclidean geometries.In this contribution we explore the two main aspects of the problem:1. Whether the conventional approach using Euclidean metric can shed valid resultswith compositional data.2. If a modification of the conventional approach replacing vectorial sum and scalarmultiplication by the canonical operators in the simplex (i.e. perturbation andpowering) can converge to an adequate solution.Preliminary tests showed that both methodologies can be used on compositional data.However, the modified version of the algorithm performs poorer than the conventionalversion, in particular, when the data is pathological. Moreover, the conventional ap-proach converges faster to a solution, when data is \well-behaved".Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
In standard multivariate statistical analysis common hypotheses of interest concern changes in mean vectors and subvectors. In compositional data analysis it is now well established that compositional change is most readily described in terms of the simplicial operation of perturbation and that subcompositions replace the marginal concept of subvectors. To motivate the statistical developments of this paper we present two challenging compositional problems from food production processes.Against this background the relevance of perturbations and subcompositions can beclearly seen. Moreover we can identify a number of hypotheses of interest involvingthe specification of particular perturbations or differences between perturbations and also hypotheses of subcompositional stability. We identify the two problems as being the counterpart of the analysis of paired comparison or split plot experiments and of separate sample comparative experiments in the jargon of standard multivariate analysis. We then develop appropriate estimation and testing procedures for a complete lattice of relevant compositional hypotheses
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
L'objectiu del projecte consisteix en desenvolupar estratègies de teràpia gènica per al tractament de la neuropatia diabètica. Per a la teràpia gènica és necessària la utilització de vectors per tal d'introduir el material genètic exogen en les cèl•lules diana. En aquest projecte s'utilitzen vectors derivats de virus adenoassociats i es fan estudis de tropisme de diferents serotips de vectors administrant-los per diferents vies. D’aquesta manera es pot escollir quin és el millor vector i la millor via d'administració per a cada cas, i en el cas d'aquest projecte, per a tractar les cèl•lules afectades en la neuropatia diabètica. La neuropatia diabètica és una complicació de la diabetis per a la qual no hi ha cap tractament. Afecta les cèl•lules del sistema nerviós perifèric (neurones sensorials, neurones motores i cèl•lules de Schwann) i és la causa la major part de les amputacions d'extremitats inferiors. En aquest projecte es pretén estudiar quines són les possibles causes del desenvolupament de la neuropatia diabètica analitzant canvis a nivell de l'expressió gènica en models de ratolins diabètics i també en els models in vitro dissenyats per al projecte. Posteriorment es vol proposar un tractament de teràpia gènica mitjançant els resultats dels estudis de tropisme dels vectors virals i dels estudis d'expressió gènica dels models de diabetis.