106 resultados para Amorphous silicon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a‐Si:H films are deposited by plasma‐enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c‐Si) substrates. The deposition of a‐Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a‐Si:H are obtained. The nucleation mechanism on metal and c‐Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a‐Si:H on both substrates. The bulk a‐Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a‐Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation‐coalescence phase is found lower in the case of c‐Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c‐Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin‐film growth, but also to monitor the preparation of complex structures on a few monolayers scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural relaxation of pure amorphous silicon a-Si and hydrogenated amorphous silicon a-Si:H materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon thin-films were obtained by catalytic chemical vapour deposition at low substrate temperatures (150°C) and high deposition rates (10 Å/s). These films, with crystalline fractions over 90%, were incorporated as the active layers of bottom-gate thin-film transistors. The initial field-effect mobilities of these devices were over 0.5 cm 2/V s and the threshold voltages lower than 4 V. In this work, we report on the enhanced stability of these devices under prolonged times of gate bias stress compared to amorphous silicon thin-film transistors. Hence, they are promising candidates to be considered in the future for applications such as flat-panel displays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.