18 resultados para Alcaloides
Resumo:
The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.
Resumo:
The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.
Resumo:
Pyrrolizidine alkaloids (PAs) are N-based plant secondary metabolites that function as chemical defenses against vertebrate and invertebrate herbivores. PAs can be highly variable at intraspecific level, both in their absolute and relative concentrations. Changes in the chemical composition of exotic plants when they invade a new environment have been poorly explored. Here we studied the biogeographical variation on PAs in Senecio pterophorus (Asteraceae) in the native region in Eastern South Africa, an expanded region in Western South Africa, and two introduced regions in Australia and Europe. PAs in S. pterophorus were represented by the highly toxic 1,2-unsaturated PAs and the less toxic 1,2-saturated PAs. Our results show a change in the plant chemical composition after invasion. Total PAs concentrations were highest in Australia compared to any other region. Plants from Europe contained the highest relative concentrations of 1,2-saturated PAs. The positive correlation between the chemical and the genetic distances estimated between populations suggests that the chemical profiles in the non-native regions were related to the plant dispersal routes. The decrease in the chemical diversity and the change in the absolute PAs concentrations in S. pterophorus after invasion may have consequences in the interactions between plants and herbivores in the novel habitats.