51 resultados para Acid Mine Drainage
Resumo:
Despite data favouring a role of dietary fat in colonic carcinogenesis, no study has focused on tissue n3 and n6 fatty acid (FA) status in human colon adenoma-carcinoma sequence. Thus, FA profile was measured in plasma phospholipids of patients with colorectal cancer (n = 22), sporadic adenoma (n = 27), and normal colon (n = 12) (control group). Additionally, mucosal FAs were assessed in both diseased and normal mucosa of cancer (n = 15) and adenoma (n = 21) patients, and from normal mucosa of controls (n = 8). There were no differences in FA profile of both plasma phospholipids and normal mucosa, between adenoma and control patients. There were considerable differences, however, in FAs between diseased and paired normal mucosa of adenoma patients, with increases of linoleic (p = 0.02), dihomogammalinolenic (p = 0.014), and eicosapentaenoic (p = 0.012) acids, and decreases of alpha linolenic (p = 0.001) and arachidonic (p = 0.02) acids in diseased mucosa. A stepwise reduction of eicosapentaenoic acid concentrations in diseased mucosa from benign adenoma to the most advanced colon cancer was seen (p = 0.009). Cancer patients showed lower alpha linolenate (p = 0.002) and higher dihomogammalinolenate (p = 0.003) in diseased than in paired normal mucosa. In conclusion changes in tissue n3 and n6 FA status might participate in the early phases of the human colorectal carcinogenesis.
Resumo:
This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
The activities of aspartate and alanine transaminase, serine dehydratase, arginase, glutamate dehydrogenase, adenylate deaminase and glutamine synthetase were determined in the stomach and small intestine of developing rats. Despite the common embryonic origin of the intestine and stomach, their enzymes showed quite different activity levels and patterns of development, depending on their roles. Most enzyme activities were low during late intrauterine life and after birth, attaining adult levels with the change of diet at weaning. No arginase activity was found in the stomach and no changes were detected in adenylate deaminase in the stomach or intestine throughout the period studied. Alanine transaminase, serine dehydratase and, to some extent, glutamine synthetase levels, significantly higher in late intrauterine life, decreased after birth, suggesting that the foetal stomach has a transient ability to handle amino acids.
Resumo:
The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Conjugated linoleic acid (CLA) has been reported to exert beneficial physiological effects on body composition and the immune system. However, little information is available on the influence of CLA on immune function during early life periods. The present study evaluates the effect of feeding an 80:20 mixture of cis-9,trans-11- and trans-10,cis-12-CLA isomers duringgestation, suckling and early infancy on the systemic and mucosal immune responses of Wistar rats at three different time points: at the end of the suckling period (21-day-old rats), in early infancy (28-day-old rats), and later in life (adulthood). Cis-9,trans-11- and trans-10,cis-12-CLA isomers were detected in the milk of CLA-fed dams and in the plasma of all CLA-supplemented pups, and the highest content was achieved in those rats supplemented over the longest period. Dietary supplementation with that CLA mix enhances the systemic production of the main in vivo and ex vivo immunoglobulin (Ig) isotypes in 21- and 28-day-old rats. Moreover, CLA supplementation during suckling and early infancy also enhances the humoral immune defenses at intestinal level, by means of mucosal IgA increase, whereas down-regulates thesystemic lymphoproliferative response. Finally, we described herein how feeding a diet enriched with the same isomer mix of cis9,trans11- and trans10,cis12-CLA from gestation to adulthood improves the capacity of adult rats to achieve a specific systemic and mucosal immune responses. All these data support the immunomodulatory effects of dietary supplementation of CLA, particularly of the cis9,trans11-CLA isomer, during early stages of life on immune system development, as well as the long-term effects on the specific immune response in adult age.
Resumo:
Background: Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).Results: We identified 137 polymorphic variants in 115 different amino acid tandem repeats. Of these, 77 contained amino acid substitutions and 60 contained gaps (expansions or contractions of the repeat unit). The analysis showed that at least about 21% of the repeats might be polymorphic in humans. We compared the mutations found in different types of amino acid repeats and in adjacent regions. Overall, repeats showed a five-fold increase in the number of gap mutations compared to adjacent regions, reflecting the action of slippage within the repetitive structures. Gap and substitution mutations were very differently distributed between different amino acid repeat types. Among repeats containing gap variants we identified several disease and candidate disease genes.Conclusion: This is the first report at a genome-wide scale of the types of mutations occurring in the amino acid repeat component of the human proteome. We show that the mutational dynamics of different amino acid repeat types are very diverse. We provide a list of loci with highly variable repeat structures, some of which may be potentially involved in disease.
Resumo:
Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage.