25 resultados para Acartia sp., copepodites, production of carbon
Resumo:
Scopolamine is an alkaloid widely used in medicine for its anticholinergic activity. The aim of this review is to show that metabolic engineering techniques constitute a suitable tool to improve the production of tropane alkaloids, focusing in particular on scopolamine. We present an overview of results obtained by various research groups, including our own, who have studied the overexpression of genes involved in the biosynthesis of scopolamine in different plant species that produce tropane alkaloids. Experiments carried out to improve production in hairy root cultures will also be described, as well as those attempting to biotransform hyoscyamine into scopolamine in roots and transgenic tobacco cells.
Resumo:
Plant cell cultures constitute a promise for the production of a high number of phytochemicals, although the majority ofbioprocesses that have been developed so far have not resultedcommercially successful. An overview indicates that most of theresearch carried out until now is of the empirical type. For this reason,there is a need for a rational approach to the molecular and cellularbasis of metabolic pathways and their regulation in order to stimulatefuture advances.The empirical investigations are based on the optimization of theculture system, exclusively considering input factors such as theselection of cellular lines, type and parameters of culture, bioreactordesign and elicitor addition, and output factors such as cellular growth,the uptake system of nutrients, production and yield. In a rationalapproach towards the elucidation of taxol and related taxaneproduction, our group has studied the relationship between the taxaneprofile and production and the expression of genes codifying forenzymes that participate in early, intermediate and late steps of theirbiosynthesis in elicited Taxus spp cell cultures. Our results show that elicitors induce a dramatic reprogramming of gene expression in Taxus cell cultures, whichlikely accounts for the enhanced production of taxol and related taxanes and we have alsodetermined some genes that control the main flux limiting steps. The application ofmetabolic engineering techniques for the production of taxol and taxanes of interest is also discussed.
Resumo:
Background: Air pollution has become an important issue worldwide due to its adverse health effects. Among the different air contaminants, volatile organic compounds (VOCs) are liquids or solids with a high vapor pressure at room temperature that are extremely dangerous for human health. Removal of these compounds can be achieved using nanomaterials with tailored properties such as carbon nanotubes. Methods: Vertically-aligned multiwall carbon nanotubes (CNTs) were successfully grown on quartz filters by means of plasma enhanced chemical vapor deposition (PECVD). Furthermore, a plasma treatment was performed in order to modify the surface properties of the CNTs. The adsorption/desorption processes of three chlorinated compounds (trichloroethylene, 1,2-dichlorobenzene and chloroform) on the CNTs were studied using mass spectrometry measurements with a residual gas analyzer. Results: The adsorption capability of the CNTs increased after functionalization of their surface with a water plasma treatment. In addition, it was found that the presence of aromatic rings, water solubility and polarity of the VOCs play an important role on the adsorption/desorption kinetics at the CNTs surface. Conclusions: This study demonstrates the applicability of CNTs deposited on quartz filters for the removal or selective detection of volatile organic compounds (VOCs). The presence of aromatic rings in VOCs results in π -stacking interactions with a significant increase of their adsorption. On the other hand, it was found that CNTs surface interactions increase with water solubility and polarity of the VOC.
Resumo:
Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.
Resumo:
Ressenya del llibre: 'Gender Inequalities, Households and the Production of Well-being in Modern Europe'
Resumo:
We show how the familiar phenomenological way of combining the Q2 (photon virtuality) and t (squared momentum transfer) dependences of the scattering amplitude in Deeply Virtual Compton Scattering (DVCS) [1, 2] and Vector Meson Production (VMP) [2] processes can be understood in an off-mass-shell generalization of dual amplitudes with Mandelstam analyticity [3]. By comparing different approaches, we managed also to constrain the numerical values of the free parameters.
Resumo:
The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study.