18 resultados para 16S ribosomal RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression usually producing translational repression and gene silencing. High-throughput sequencing technologies have revealed heterogeneity at length and sequence level for the majority of mature miRNAs (IsomiRs). Most isomiRs can be explained by variability in either Dicer1 or Drosha cleavage during miRNA biogenesis at 5" or 3" of the miRNA (trimming variants). Although isomiRs have been described in different tissues and organisms, their functional validation as modulators of gene expression remains elusive. Here we have characterized the expression and function of a highly abundant miR-101 5"-trimming variant (5"-isomiR-101). Results The analysis of small RNA sequencing data in several human tissues and cell lines indicates that 5"-isomiR-101 is ubiquitously detected and a highly abundant, especially in the brain. 5"- isomiR-101 was found in Ago-2 immunocomplexes and complementary approaches showed that 5"-isomiR-101 interacted with different members of the silencing (RISC) complex. In addition, 5"-isomiR-101 decreased the expression of five validated miR-101 targets, suggesting that it is a functional variant. Both the binding to RISC members and the degree of silencing were less efficient for 5"-isomiR-101 compared with miR-101. For some targets, both miR-101 and 5"-isomiR-101 significantly decreased protein expression with no changes in the respective mRNA levels. Although a high number of overlapping predicted targets suggest similar targeted biological pathways, a correlation analysis of the expression profiles of miR-101 variants and predicted mRNA targets in human brains at different ages, suggest specific functions for miR-101- and 5"-isomiR-101. Conclusions These results suggest that isomiRs are functional variants and further indicate that for a given miRNA, the different isomiRs may contribute to the overall effect as quantitative and qualitative fine-tuners of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common diagnosed cancer and the leading cause of cancer death among females worldwide. It is considered a highly heterogeneous disease and it must be classified into more homogeneous groups. Hence, the purpose of this study was to classify breast tumors based on variations in gene expression patterns derived from RNA sequencing by using different class discovery methods. 42 breast tumors paired-samples were sequenced by Illumine Genome Analyzer and the data was analyzed and prepared by TopHat2 and htseq-count. As reported previously, breast cancer could be grouped into five main groups known as basal epithelial-like group, HER2 group, normal breast-like group and two Luminal groups with a distinctive expression profile. Classifying breast tumor samples by using PAM50 method, the most common subtype was Luminal B and was significantly associated with ESR1 and ERBB2 high expression. Luminal A subtype had ESR1 and SLC39A6 significant high expression, whereas HER2 subtype had a high expression of ERBB2 and CNNE1 genes and low luminal epithelial gene expression. Basal-like and normal-like subtypes were associated with low expression of ESR1, PgR and HER2, and had significant high expression of cytokeratins 5 and 17. Our results were similar compared with TGCA breast cancer data results and with known studies related with breast cancer classification. Classifying breast tumors could add significant prognostic and predictive information to standard parameters, and moreover, identify marker genes for each subtype to find a better therapy for patients with breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Els RNA (o ARN, àcids ribonucleics) són biomolècules lineals de cadena senzilla, com un fil, formades per la unió seqüencial d'altres molècules més senzilles, els nucleòtids. Abans de la descoberta del fenòmen de RNAi es creia que el RNA era només un intermediari silenciós de la maquinària genètica, que transportava cegament les instruccions dels gens, en descodificava el missatge i el convertia en proteïnes, procés que es coneix amb el nom de flux d'informació genètica (del gen, que emmagatzema la informació i és format per ADN, a les proteïnes, que fan la feina especificada pel gen) [...].