698 resultados para American Physical Society
Resumo:
A deformed-jellium model is used to calculate the fission barrier height of positive doubly charged sodium clusters within an extended Thomas-Fermi approximation. The fissioning cluster is continuously deformed from the parent configuration until it splits into two fragments. Although the shape of the fission barrier obviously depends on the parametrization of the fission path, we have found that remarkably, the maximum of the barrier corresponds to a configuration in which the emerging fragments are already formed and rather well apart. The implication of this finding in the calculation of critical numbers for fission is illustrated in the case of multiply charged Na clusters.
Resumo:
Bubble formation in solutions of 3He and 4He is studied within a density-functional approach. In particular, the temperature dependence of the cavitation pressure for different 3He concentrations is calculated at low temperatures and compared to that of pure 4He. The presence of Andreev states lowers the surface tension and, consequently, nucleation barriers are drastically reduced. This fact means that even at low 3He concentrations the cavitation process takes place at higher pressures than the spinodal pressure, which is not the case for pure 4He.
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
Depending on the 3He concentration, thermal nucleation in 3-4He supersaturated liquid mixtures at negative pressures may be originated either by bubble or by 3rich drop formation. We have investigated this phenomenon within a density-functional approach, determining the regions in the pressure¿3He-concentration plane where bubbles or drops likely drive the nucleation process. As an illustrative example, we also give the homogeneous nucleation pressure corresponding to 50 and 100 mK temperature.
Resumo:
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
Resumo:
A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.
Resumo:
We have investigated the mechanisms leading to two and three body photon absorption in nuclei. At photon energies around the pion production threshold we obtain a fraction of three body absorption of less than 10% of the total, contradicting previous theoretical claims that it dominates the absorption process. The strength of the three body channel grows smoothly with the photon energy reaching a maximum of about 60% of the total direct absorption at energies of the photon around 400 MeV.
Resumo:
The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.