273 resultados para Equilibrium Swelling Theory
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.
Resumo:
We consider mean first-passage times (MFPTs) for systems driven by non-Markov gamma and McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes. The exact results are compared with the MFPT for Markov dichotomous noise and with the results of Monte Carlo simulations.
Resumo:
We study the dynamics of density fluctuations in purely diffusive systems away from equilibrium. Under some conditions the static density correlation function becomes long ranged. We then analyze this behavior in the framework of nonequilibrium fluctuating hydrodynamics.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
We have shown that the mobility tensor for a particle moving through an arbitrary homogeneous stationary flow satisfies generalized Onsager symmetry relations in which the time-reversal transformation should also be applied to the external forces that keep the system in the stationary state. It is then found that the lift forces, responsible for the motion of the particle in a direction perpendicular to its velocity, have different parity than the drag forces.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Resumo:
The short-range resonating-valence-bond (RVB) wave function with nearest-neighbor (NN) spin pairings only is investigated as a possible description for the Heisenberg model on a square-planar lattice. A type of long-range order associated to this RVB Ansatz is identified along with some qualitative consequences involving lattice distortions, excitations, and their coupling.
Resumo:
In the last 50 years, we have had approximately 40 events with characteristics related to financial crisis. The most severe crisis was in 1929, when the financial markets plummet and the US gross domestic product decline in more than 30 percent. Recently some years ago, a new crisis developed in the United States, but instantly caused consequences and effects in the rest of the world.This new economic and financial crisis has increased the interest and motivation for the academic community, professors and researchers, to understand the causes and effects of the crisis, to learn from it. This is the one of the main reasons for the compilation of this book, which begins with a meeting of a group of IAFI researchers from the University of Barcelona, where researchers form Mexico and Spain, explain causes and consequences of the crisis of 2007.For that reason, we believed this set of chapters related to methodologies, applications and theories, would conveniently explained the characteristics and events of the past and future financial crisisThis book consists in 3 main sections, the first one called "State of the Art and current situation", the second named "Econometric applications to estimate crisis time periods" , and the third one "Solutions to diminish the effects of the crisis". The first section explains the current point of view of many research papers related to financial crisis, it has 2 chapters. In the first one, it describe and analyzes the models that historically have been used to explain financial crisis, furthermore, it proposes to used alternative methodologies such as Fuzzy Cognitive Maps. On the other hand , Chapter 2 , explains the characteristics and details of the 2007 crisis from the US perspective and its comparison to 1929 crisis, presenting some effects in Mexico and Latin America.The second section presents two econometric applications to estimate possible crisis periods. For this matter, Chapter 3, studies 3 Latin-American countries: Argentina, Brazil and Peru in the 1994 crisis and estimates the multifractal characteristics to identify financial and economic distress.Chapter 4 explains the crisis situations in Argentina (2001), Mexico (1994) and the recent one in the United States (2007) and its effects in other countries through a financial series methodology related to the stock market.The last section shows an alternative to prevent the effects of the crisis. The first chapter explains the financial stability effects through the financial system regulation and some globalization standards. Chapter 6, study the benefits of the Investor activism and a way to protect personal and national wealth to face the financial crisis risks.
Resumo:
We develop an abstract extrapolation theory for the real interpolation method that covers and improves the most recent versions of the celebrated theorems of Yano and Zygmund. As a consequence of our method, we give new endpoint estimates of the embedding Sobolev theorem for an arbitrary domain Omega
Resumo:
Multiobjective matrix games have been traditionally analyzed from two different points of view: equiibrium concepts and security strategies. This paper is based upon the idea that both players try to reach equilibrium points playing pairs of security strategies, as it happens in scalar matrix games. We show conditions guaranteeing the existence of equilibria in security strategies, named security equilibria
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.