342 resultados para Lope Díaz de Haro
Resumo:
We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.
Resumo:
We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.
Resumo:
We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of computer simulations we find the relation between the intrinsic dynamics of each member of the population and their mutual interactions that ensures, in a general context, the existence of a fully synchronized regime. This condition turns out to be the same as that obtained for the globally coupled population. When the condition is not completely satisfied we find different spatial structures. This also gives some hints about self-organized criticality.
Resumo:
We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a mathematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Furthermore, we show that this stability is the responsible for the different behaviors.
Resumo:
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
Resumo:
Different microscopic models exhibiting self-organized criticality are studied numerically and analytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical exponent, and to check universality classes. We find that various models lead to the same exponent, but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain continuum equations with different sources of noise, which we call internal and external. Different correlations of the noise give rise to different critical behavior. A model for external noise is proposed that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase transition above d=4. Limitations of the approach of these models by a simple nonlinear equation are discussed.
Resumo:
A simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information, agents decide whether to upgrade their level or not, balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.
Resumo:
We propose a general scenario to analyze technological changes in socio-economic environments. We illustrate the ideas with a model that incorporating the main trends is simple enough to extract analytical results and, at the same time, sufficiently complex to display a rich dynamic behavior. Our study shows that there exists a macroscopic observable that is maximized in a regime where the system is critical, in the sense that the distribution of events follow power laws. Computer simulations show that, in addition, the system always self-organizes to achieve the optimal performance in the stationary state.
Resumo:
The observation that real complex networks have internal structure has important implication for dynamic processes occurring on such topologies. Here we investigate the impact of community structure on a model of information transfer able to deal with both search and congestion simultaneously. We show that networks with fuzzy community structure are more efficient in terms of packet delivery than those with pronounced community structure. We also propose an alternative packet routing algorithm which takes advantage of the knowledge of communities to improve information transfer and show that in the context of the model an intermediate level of community structure is optimal. Finally, we show that in a hierarchical network setting, providing knowledge of communities at the level of highest modularity will improve network capacity by the largest amount.
Resumo:
Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for d=2 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] (Abelian) model, and that the dynamical exponent as computed from the correlation length and from the roughness of the energy profile do not necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of comparing these results with those obtained from renormalization group arguments is also briefly addressed.
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state
Resumo:
We analyze the emergence of synchronization in a population of moving integrate-and-fire oscillators. Oscillators, while moving on a plane, interact with their nearest neighbor upon firing time. We discover a nonmonotonic dependence of the synchronization time on the velocity of the agents. Moreover, we find that mechanisms that drive synchronization are different for different dynamical regimes. We report the extreme situation where an interplay between the time scales involved in the dynamical processes completely inhibits the achievement of a coherent state. We also provide estimators for the transitions between the different regimes.