204 resultados para stochastic optimisation threshold policy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a class of systems for which the signal-to-noise ratio always increases when increasing the noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some monostable systems. We outline applications of our results to a wide variety of systems pertaining to different scientific areas. Two particular examples are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a class of systems for which the signal-to-noise ratio as a function of the noise level may display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of at a single value which has occurred in systems considered up to now in the framework of stochastic resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random scale-free networks have the peculiar property of being prone to the spreading of infections. Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free degree distribution with diverging second moment is a sufficient condition to have null epidemic threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present result is related to the divergence of the average nearest neighbors degree, enforced by the degree detailed balance condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider Brownian motion on a line terminated by two trapping points. A bias term in the form of a telegraph signal is applied to this system. It is shown that the first two moments of survival time exhibit a minimum at the same resonant frequency.