592 resultados para Universitat de Girona -- Graduate work


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging.When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positivevariables, has no straightforward way to build consistent and optimal confidence intervals for estimates.These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In standard multivariate statistical analysis common hypotheses of interest concern changes in mean vectors and subvectors. In compositional data analysis it is now well established that compositional change is most readily described in terms of the simplicial operation of perturbation and that subcompositions replace the marginal concept of subvectors. To motivate the statistical developments of this paper we present two challenging compositional problems from food production processes.Against this background the relevance of perturbations and subcompositions can beclearly seen. Moreover we can identify a number of hypotheses of interest involvingthe specification of particular perturbations or differences between perturbations and also hypotheses of subcompositional stability. We identify the two problems as being the counterpart of the analysis of paired comparison or split plot experiments and of separate sample comparative experiments in the jargon of standard multivariate analysis. We then develop appropriate estimation and testing procedures for a complete lattice of relevant compositional hypotheses

Relevância:

100.00% 100.00%

Publicador:

Resumo:

R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.We’ll present the current status of MixeR development and illustrate its use on selected data sets

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The statistical analysis of compositional data is commonly used in geological studies.As is well-known, compositions should be treated using logratios of parts, which aredifficult to use correctly in standard statistical packages. In this paper we describe thenew features of our freeware package, named CoDaPack, which implements most of thebasic statistical methods suitable for compositional data. An example using real data ispresented to illustrate the use of the package

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature related to skew–normal distributions has grown rapidly in recent yearsbut at the moment few applications concern the description of natural phenomena withthis type of probability models, as well as the interpretation of their parameters. Theskew–normal distributions family represents an extension of the normal family to whicha parameter (λ) has been added to regulate the skewness. The development of this theoreticalfield has followed the general tendency in Statistics towards more flexible methodsto represent features of the data, as adequately as possible, and to reduce unrealisticassumptions as the normality that underlies most methods of univariate and multivariateanalysis. In this paper an investigation on the shape of the frequency distribution of thelogratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells,has been performed. Samples have been collected around the active center of Vulcanoisland (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals ofabout six months. Data of the logratio have been tentatively modeled by evaluating theperformance of the skew–normal model for each well. Values of the λ parameter havebeen compared by considering temperature and spatial position of the sampling points.Preliminary results indicate that changes in λ values can be related to the nature ofenvironmental processes affecting the data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low levels of unemployment recorded in the UK in recent years are widely cited asevidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from theseconclusions have drawn attention to the greatly increased extent of non-employment(around a quarter of the UK’s working age population are not in employment) and themarked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst oldermales previously employed in the now very much smaller ‘heavy’ industries (e.g. coal,steel, shipbuilding).This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of theproblem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size ofthe non-employment rate and the share of those not employed through reason of sicknessor disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest article pretén presentar les línies de treball del grup de recerca de l'Àrea de Geodinàmica Externa del Departament de Ciències Ambientals de la Facultat de Ciències de la UdG (Universitat de Girona)com a mostra dels camps d'aplicació més comuns del treball dels geòlegs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In human Population Genetics, routine applications of principal component techniques are oftenrequired. Population biologists make widespread use of certain discrete classifications of humansamples into haplotypes, the monophyletic units of phylogenetic trees constructed from severalsingle nucleotide bimorphisms hierarchically ordered. Compositional frequencies of the haplotypesare recorded within the different samples. Principal component techniques are then required as adimension-reducing strategy to bring the dimension of the problem to a manageable level, say two,to allow for graphical analysis.Population biologists at large are not aware of the special features of compositional data and normally make use of the crude covariance of compositional relative frequencies to construct principalcomponents. In this short note we present our experience with using traditional linear principalcomponents or compositional principal components based on logratios, with reference to a specificdataset

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main instrument used in psychological measurement is the self-report questionnaire. One of its majordrawbacks however is its susceptibility to response biases. A known strategy to control these biases hasbeen the use of so-called ipsative items. Ipsative items are items that require the respondent to makebetween-scale comparisons within each item. The selected option determines to which scale the weight ofthe answer is attributed. Consequently in questionnaires only consisting of ipsative items everyrespondent is allotted an equal amount, i.e. the total score, that each can distribute differently over thescales. Therefore this type of response format yields data that can be considered compositional from itsinception.Methodological oriented psychologists have heavily criticized this type of item format, since the resultingdata is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians havekept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate bothpositions and addresses the similarities and differences between the two data collection methods. Theultimate objective is to formulate a guideline when to use which type of item format.The comparison is based on data obtained with both an ipsative and normative version of threepsychological questionnaires, which were administered to 502 first-year students in psychology accordingto a balanced within-subjects design. Previous research only compared the direct ipsative scale scoreswith the derived ipsative scale scores. The use of compositional data analysis techniques also enables oneto compare derived normative score ratios with direct normative score ratios. The addition of the secondcomparison not only offers the advantage of a better-balanced research strategy. In principle it also allowsfor parametric testing in the evaluation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of economic literature has presented its analysis under the assumption of homogeneous capital stock.However, capital composition differs across countries. What has been the pattern of capital compositionassociated with World economies? We make an exploratory statistical analysis based on compositional datatransformed by Aitchinson logratio transformations and we use tools for visualizing and measuring statisticalestimators of association among the components. The goal is to detect distinctive patterns in the composition.As initial findings could be cited that:1. Sectorial components behaved in a correlated way, building industries on one side and , in a lessclear view, equipment industries on the other.2. Full sample estimation shows a negative correlation between durable goods component andother buildings component and between transportation and building industries components.3. Countries with zeros in some components are mainly low income countries at the bottom of theincome category and behaved in a extreme way distorting main results observed in the fullsample.4. After removing these extreme cases, conclusions seem not very sensitive to the presence ofanother isolated cases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rankscales. Nevertheless, these scales have particular characteristics that must be taken into account: totalscores and rank are highly relevant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression