215 resultados para Signaling Theory
Resumo:
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fi ber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fi bers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These fi ndings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Resumo:
Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.
Resumo:
We demonstrate how duality invariance of the low energy expansion of the four-supergraviton amplitude in type II string theory determines the precise coefficients of multiloop logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is illustrated by the explicit moduli-dependence of terms of the form ¿2k R4, with k ¿ 3, in the effective action. Furthermore, we show that in the supergravity limit the perturbative contributions are swamped by an accumulation of non-perturbative effects of zero-action instantons.
Resumo:
The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions
Resumo:
Abstract Background: Micro RNAs are small, non-coding, single-stranded RNAs that negatively regulate gene expression at the post-transcriptional level. Since miR-143 was found to be down-regulated in prostate cancer cells, we wanted to analyze its expression in human prostate cancer, and test the ability of miR-43 to arrest prostate cancer cell growth in vitro and in vivo. Results: Expression of miR-143 was analyzed in human prostate cancers by quantitative PCR, and by in situ hybridization. miR-143 was introduced in cancer cells in vivo by electroporation. Bioinformatics analysis and luciferase-based assays were used to determine miR-143 targets. We show in this study that miR-143 levels are inversely correlated with advanced stages of prostate cancer. Rescue of miR-143 expression in cancer cells results in the arrest of cell proliferation and the abrogation of tumor growth in mice. Furthermore, we show that the effects of miR-143 are mediated, at least in part by the inhibition of extracellular signal-regulated kinase-5 (ERK5) activity. We show here that ERK5 is a miR-143 target in prostate cancer. Conclusions: miR-143 is as a new target for prostate cancer treatment.
Resumo:
In his version of the theory of multicomponent systems, Friedman used the analogy which exists between the virial expansion for the osmotic pressure obtained from the McMillan-Mayer (MM) theory of solutions in the grand canonical ensemble and the virial expansion for the pressure of a real gas. For the calculation of the thermodynamic properties of the solution, Friedman proposed a definition for the"excess free energy" that is a reminder of the ancient idea for the"osmotic work". However, the precise meaning to be attached to his free energy is, within other reasons, not well defined because in osmotic equilibrium the solution is not a closed system and for a given process the total amount of solvent in the solution varies. In this paper, an analysis based on thermodynamics is presented in order to obtain the exact and precise definition for Friedman"s excess free energy and its use in the comparison with the experimental data.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.
Resumo:
We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
Resumo:
Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.