187 resultados para Billes magnétiques
Resumo:
We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.
Resumo:
Very fast magnetic avalanches in (La, Pr)-based manganites are the signature of a phase transition from an insulating blocked charge-ordered antiferromagnetic state to a charge-delocalized ferromagnetic (CD-FM) state. We report here the experimental observation that this transition does not occur either simultaneously or randomly in the whole sample but there is instead a spatial propagation with a velocity of the order of tens of m/s. Our results show that avalanches originate from the inside of the sample, move to the outside, and occur at values of the applied magnetic field that depend on the CD-FM fraction in the sample. Moreover, upon application of surface acoustic waves at constant magnetic fields, we are able to trigger avalanches at very well-determined values of the temperature and magnetic field. Due to the interaction with the acoustic waves, the number of isolated ferromagnetic clusters in La0.225Pr0.40Ca0.375MnO3 starts to grow across the entire sample in the same way as if it were a magnetic deflagration.
Resumo:
We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of Mn12 acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12 acetate [Y. Suzuki et al., Phys. Rev. Lett. 95, 147201 (2005)], this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.
Resumo:
Classical and quantum theory of spin waves in the vortex state of a mesoscopic submicron magnetic disk have been developed with account of the finite mass density of the vortex. Oscillations of the vortex core resemble oscillations of a charged string in a potential well in the presence of the magnetic field. A conventional gyrotropic frequency appears as a gap in the spectrum of spin waves of the vortex. The mass of the vortex has been computed, and the result agrees with experimental findings. The finite vortex mass generates a high-frequency branch of spin waves. The effects of an external magnetic field and dissipation have been addressed.