226 resultados para generalized assignment problem
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
El objetivo de este artículo es presentar el proyecto EcoSPORTech, cuya finalidad es la creación de una empresa social con jóvenes para la realización de actividades deportivas/ocio en el medio natural, integrando las nuevas tecnologías. Este proyecto supone una colaboración interdisciplinaria dentro de la Universidad de Vic, entre las facultades de Empresa y Comunicación (FEC), la de Ciencias de la Salud y el Bienestar (FCSB) y la de Educación (FE) e integra un equipo de profesionales procedentes de los ámbitos de la empresa, el marketing, el periodismo, el deporte y la terapia ocupacional. Estos profesores formarán al grupo de jóvenes con los que se creará la empresa y dirigirán la misma. Esta empresa (cooperativa) se integra en el vivero de empresas sociales que se está creando en la Universidad de Vic.
Resumo:
Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.
On the existence of bi-pyramidal central configurations of the n + 2-body problem with an n-gon base
Resumo:
Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.
Resumo:
We consider 2n masses located at the vertices of two nested regular polyhedra with the same number of vertices. Assuming that the masses in each polyhedron are equal, we prove that for each ratio of the masses of the inner and the outer polyhedron there exists a unique ratio of the length of the edges of the inner and the outer polyhedron such that the configuration is central.
Resumo:
Three regular polyhedra are called nested if they have the same number of vertices n, the same center and the positions of the vertices of the inner polyhedron ri, the ones of the medium polyhedron Ri and the ones of the outer polyhedron Ri satisfy the relation Ri = ri and Ri = Rri for some scale factors R > > 1 and for all i = 1, . . . , n. We consider 3n masses located at the vertices of three nested regular polyhedra. We assume that the masses of the inner polyhedron are equal to m1, the masses of the medium one are equal to m2, and the masses of the outer one are equal to m3. We prove that if the ratios of the masses m2/m1 and m3/m1 and the scale factors and R satisfy two convenient relations, then this configuration is central for the 3n–body problem. Moreover there is some numerical evidence that, first, fixed two values of the ratios m2/m1 and m3/m1, the 3n–body problem has a unique central configuration of this type; and second that the number of nested regular polyhedra with the same number of vertices forming a central configuration for convenient masses and sizes is arbitrary.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with the freeze-out problem, while the discussion of transition between different stages of the collision is applicable to other transitions also. More recently, hadronization and molecular dynamics models have been matched to the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out hypersurface). This work presents a generalized description of how to match the stages of the description of a reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily applicable in its simplest version for most applications.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.