187 resultados para Noise models
Resumo:
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
In this paper we highlight the importance of the operational costs in explaining economic growth and analyze how the industrial structure affects the growth rate of the economy. If there is monopolistic competition only in an intermediate goods sector, then production growth coincides with consumption growth. Moreover, the pattern of growth depends on the particular form of the operational cost. If the monopolistically competitive sector is the final goods sector, then per capita production is constant but per capita effective consumption or welfare grows. Finally, we modify again the industrial structure of the economy and show an economy with two different growth speeds, one for production and another for effective consumption. Thus, both the operational cost and the particular structure of the sector that produces the final goods determines ultimately the pattern of growth.
Resumo:
[eng] This paper provides, from a theoretical and quantitative point of view, an explanation of why taxes on capital returns are high (around 35%) by analyzing the optimal fiscal policy in an economy with intergenerational redistribution. For this purpose, the government is modeled explicitly and can choose (and commit to) an optimal tax policy in order to maximize society's welfare. In an infinitely lived economy with heterogeneous agents, the long run optimal capital tax is zero. If heterogeneity is due to the existence of overlapping generations, this result in general is no longer true. I provide sufficient conditions for zero capital and labor taxes, and show that a general class of preferences, commonly used on the macro and public finance literature, violate these conditions. For a version of the model, calibrated to the US economy, the main results are: first, if the government is restricted to a set of instruments, the observed fiscal policy cannot be disregarded as sub optimal and capital taxes are positive and quantitatively relevant. Second, if the government can use age specific taxes for each generation, then the age profile capital tax pattern implies subsidizing asset returns of the younger generations and taxing at higher rates the asset returns of the older ones.
Resumo:
In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.
Resumo:
Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.
Resumo:
The phenomenon of anomalous fluctuations associated with the decay of an unstable state is analyzed in the presence of multiplicative noise. A theory is presented and compared with a numerical simulation. Our results allow us to distinguish the roles of additive and multiplicative noise in the nonlinear relaxation process. We suggest the use of experiments on transient dynamics to understand the effect of these two sources of noise in problems in which parametric noise is thought to be important, such as dye lasers.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
We consider the effects of external, multiplicative white noise on the relaxation time of a general representation of a bistable system from the points of view provided by two, quite different, theoretical approaches: the classical Stratonovich decoupling of correlations and the new method due to Jung and Risken. Experimental results, obtained from a bistable electronic circuit, are compared to the theoretical predictions. We show that the phenomenon of critical slowing down appears as a function of the noise parameters, thereby providing a correct characterization of a noise-induced transition.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
A retarded backward equation for a non-Markovian process induced by dichotomous noise (the random telegraphic signal) is deduced. The mean-first-passage time of this process is exactly obtained. The Gaussian white noise and the white shot noise limits are studied. Explicit physical results in first approximation are evaluated.
Resumo:
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study some suggested solutions for this problem, and demonstrate it in one example.