175 resultados para valuation models
Resumo:
[eng] This paper provides, from a theoretical and quantitative point of view, an explanation of why taxes on capital returns are high (around 35%) by analyzing the optimal fiscal policy in an economy with intergenerational redistribution. For this purpose, the government is modeled explicitly and can choose (and commit to) an optimal tax policy in order to maximize society's welfare. In an infinitely lived economy with heterogeneous agents, the long run optimal capital tax is zero. If heterogeneity is due to the existence of overlapping generations, this result in general is no longer true. I provide sufficient conditions for zero capital and labor taxes, and show that a general class of preferences, commonly used on the macro and public finance literature, violate these conditions. For a version of the model, calibrated to the US economy, the main results are: first, if the government is restricted to a set of instruments, the observed fiscal policy cannot be disregarded as sub optimal and capital taxes are positive and quantitatively relevant. Second, if the government can use age specific taxes for each generation, then the age profile capital tax pattern implies subsidizing asset returns of the younger generations and taxing at higher rates the asset returns of the older ones.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.
Resumo:
The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study some suggested solutions for this problem, and demonstrate it in one example.
Resumo:
The classical trajectory and spin precessions of Bargmann, Michel, and Telegdi are deduced from a pseudoclassical model of a relativistic spin-(1/2) particle. The corresponding deduction from a non- relativistic model is also given.
Resumo:
We study the influence of disorder strength on the interface roughening process in a phase-field model with locally conserved dynamics. We consider two cases where the mobility coefficient multiplying the locally conserved current is either constant throughout the system (the two-sided model) or becomes zero in the phase into which the interface advances (one-sided model). In the limit of weak disorder, both models are completely equivalent and can reproduce the physical process of a fluid diffusively invading a porous media, where super-rough scaling of the interface fluctuations occurs. On the other hand, increasing disorder causes the scaling properties to change to intrinsic anomalous scaling. In the limit of strong disorder this behavior prevails for the one-sided model, whereas for the two-sided case, nucleation of domains in front of the invading front are observed.
Resumo:
Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.
Resumo:
We study whether the neutron skin thickness Δrnp of 208Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δrnp arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δrnp of 208Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δrnp of 208Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δrnp of 208Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δrnp. We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208Pb nucleon densities.
Resumo:
The intensity correlation functions C(t) for the colored-gain-noise model of dye lasers are analyzed and compared with those for the loss-noise model. For correlation times ¿ larger than the deterministic relaxation time td, we show with the use of the adiabatic approximation that C(t) values coincide for both models. For small correlation times we use a method that provides explicit expressions of non-Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Comparison with numerical simulations shows excellent results simultaneously for short- and long-time regimes. It is found that, when the correlation time of the noise increases, differences between the gain- and loss-noise models tend to disappear. The decay of C(t) for both models can be described by a time scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model, a secondary time scale remains for large times for the gain-noise model, which could allow one to distinguish between both models.