233 resultados para statistical quantum field theory
Resumo:
In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.
Resumo:
The string model with N=2 world-sheet supersymmetry is approached via ghosts, Becchi-Rouet-Stora-Tyutin cohomology, and bosonization. Some amplitudes involving massless scalars and vectors are computed at the tree level. The constraints of locality on the spectrum are analyzed. An attempt is made to "decompactify" the model into a four-dimensional theory.
Resumo:
We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing at the Hamiltonian and Lagrangian level is also studied.
Resumo:
Measurements of CP-violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP-violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutrino interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on the source-detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics.
Resumo:
We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.
Resumo:
Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.