164 resultados para Magnetic anomalies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu/Fe granular film, formed from a multilayer film and composed of particles of Fe imbedded in Cu, has had several of its important properties investigated. Measurements include ferromagentic resonance, magnetoresistance, Mössbauer effect, magnetic viscosity, and magnetization. The two‐phase behavior of these immiscible alloy systems, and the effect of multilayering on the shape of the magnetic precipitates, can explain some of these properties. An explanation of the ferromagnetic resonance line shape is proffered. An extraordinary macroscopic quantum tunneling effect is found to govern the magnetic relaxation at the lowest temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a multi-stage classifier for magnetic resonance spectra of human brain tumours which is being developed as part of a decision support system for radiologists. The basic idea is to decompose a complex classification scheme into a sequence of classifiers, each specialising in different classes of tumours and trying to reproducepart of the WHO classification hierarchy. Each stage uses a particular set of classification features, which are selected using a combination of classical statistical analysis, splitting performance and previous knowledge.Classifiers with different behaviour are combined using a simple voting scheme in order to extract different error patterns: LDA, decision trees and the k-NN classifier. A special label named "unknown¿ is used when the outcomes of the different classifiers disagree. Cascading is alsoused to incorporate class distances computed using LDA into decision trees. Both cascading and voting are effective tools to improve classification accuracy. Experiments also show that it is possible to extract useful information from the classification process itself in order to helpusers (clinicians and radiologists) to make more accurate predictions and reduce the number of possible classification mistakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on experimental observations of modulated magnetic patterns in a Co0.5Ni0.205Ga0.295 alloy, we propose a model to describe a (purely) magnetic tweed and a magnetoelastic tweed. The former arises above the Curie (or Nel) temperature due to magnetic disorder. The latter results from compositional fluctuations coupling to strain and then to magnetism through the magnetoelastic interaction above the structural transition temperature. We discuss the origin of purely magnetic and magnetoelastic precursor modulations and their experimental thermodynamic signatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very fast magnetic avalanches in (La, Pr)-based manganites are the signature of a phase transition from an insulating blocked charge-ordered antiferromagnetic state to a charge-delocalized ferromagnetic (CD-FM) state. We report here the experimental observation that this transition does not occur either simultaneously or randomly in the whole sample but there is instead a spatial propagation with a velocity of the order of tens of m/s. Our results show that avalanches originate from the inside of the sample, move to the outside, and occur at values of the applied magnetic field that depend on the CD-FM fraction in the sample. Moreover, upon application of surface acoustic waves at constant magnetic fields, we are able to trigger avalanches at very well-determined values of the temperature and magnetic field. Due to the interaction with the acoustic waves, the number of isolated ferromagnetic clusters in La0.225Pr0.40Ca0.375MnO3 starts to grow across the entire sample in the same way as if it were a magnetic deflagration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of Mn12 acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12 acetate [Y. Suzuki et al., Phys. Rev. Lett. 95, 147201 (2005)], this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical and quantum theory of spin waves in the vortex state of a mesoscopic submicron magnetic disk have been developed with account of the finite mass density of the vortex. Oscillations of the vortex core resemble oscillations of a charged string in a potential well in the presence of the magnetic field. A conventional gyrotropic frequency appears as a gap in the spectrum of spin waves of the vortex. The mass of the vortex has been computed, and the result agrees with experimental findings. The finite vortex mass generates a high-frequency branch of spin waves. The effects of an external magnetic field and dissipation have been addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated geophysical survey was conducted in September 2007 at the Cathedral of Tarragona (Catalonia, NE Spain), to search for archaeological remains of the Roman temple dedicated to the Emperor Augustus. Many hypotheses about its location have been put forward, the most recent ones suggesting it could be inside the present cathedral. Tarragona’s Cathedral, one of the most famous churches in Spain (12th century), was built during the evolution from the Romanesque to Gothic styles. As its area is rather wide, direct digging to detect hidden structures would be expensive and also interfere with religious services. Consequently, the use of detailed non-invasive analyses was preferred. A project including Electrical resistivity tomography (ERT) and Ground probing radar (GPR) was planned for a year and conducted during a week of intensive field survey. Both ERT and GPR provided detailed information about subsoil structures. Different ERT techniques and arrays were used, ranging from standard Wenner-Schlumberger 2D sections to full 3D electrical imaging using the MYG array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity points to obtain a complete 3D image after full inversion. The geophysical results were clear enough to persuade the archaeologists to excavate the area. The excavation confirmed the geophysical interpretation. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by recent archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.