224 resultados para HOLE THEORY
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
The recently proposed correspondence principle of Horowitz and Polchinski provides a concrete means to relate (among others) black holes with electric Neveu-SchwarzNeveu-Schwarz charges to fundamental strings and correctly match their entropies. We further test this correspondence by examining the greybody factors in the absorption rates of neutral, minimally coupled scalars by a near extremal black hole. Perhaps surprisingly, the results disagree in general with the absorption by weakly coupled strings. Though this does not disprove the correspondence, it indicates that it might not be simple in this region of the black hole parameter space.
Resumo:
It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and that one can think of such a vortex as black hole "hair." In this paper, we examine the properties of an Abelian Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both analytical and numerical techniques, we show that the magnetic field lines (as well as the scalar field) of the vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme black holes in Einstein-Maxwell theory are known to exhibit such a "Meissner effect" in general. This would seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition that the hole should be expelled. However, as we allow the extreme horizon radius to become very large compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion that a black hole can support "long" Abelian Higgs hair in the extreme limit. We show that these considerations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at black holes, as in the processes where a string snaps by nucleating black holes.
Resumo:
In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.
Resumo:
Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.
Resumo:
It has been claimed that extreme black holes exhibit a phenomenon of flux expulsion for Abelian Higgs vortices, irrespective of the relative width of the vortex to the black hole. Recent work by two of the authors showed a subtlety in the treatment of the event horizon, which cast doubt on this claim. We analyze in detail the vortexextreme black hole system, showing that, while flux expulsion can occur, it does not do so in all cases. We give analytic proofs for both expulsion and penetration of flux, in each case deriving a bound for that behavior. We also present extensive numerical work backing up, and refining, these claims, and showing in detail how a vortex can end on a black hole in all situations. We also calculate the back reaction of the vortex on the geometry, and comment on the more general vortexblack hole system.
Resumo:
We extend the recent microscopic analysis of extremal dyonic Kaluza-Klein (D0-D6) black holes to cover the regime of fast rotation in addition to slow rotation. Fastly rotating black holes, in contrast to slow ones, have nonzero angular velocity and possess ergospheres, so they are more similar to the Kerr black hole. The D-brane model reproduces their entropy exactly, but the mass gets renormalized from weak to strong coupling, in agreement with recent macroscopic analyses of rotating attractors. We discuss how the existence of the ergosphere and superradiance manifest themselves within the microscopic model. In addition, we show in full generality how Myers-Perry black holes are obtained as a limit of Kaluza-Klein black holes, and discuss the slow and fast rotation regimes and superradiance in this context.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.
Resumo:
It has been argued that a black hole horizon can support the long range fields of a Nielsen-Olesen string, and that one can think of such a vortex as black hole hair. We show that the fields inside the vortex are completely expelled from a charged black hole in the extreme limit (but not in the near extreme limit). This would seem to imply that a vortex cannot be attached to an extreme black hole. Furthermore, we provide evidence that it is energetically unfavorable for a thin vortex to interact with a large extreme black hole. This dispels the notion that a black hole can support long Abelian Higgs hair in the extreme limit.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.
Resumo:
The holographic dual of a finite-temperature gauge theory with a small number of flavors typically contains D-brane probes in a black hole background. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. In the new phase, the meson spectrum is continuous and gapless. At large Nc and large't Hooft coupling, we show that this phase transition is always first order. In confining theories with heavy quarks, it occurs above the deconfinement transition for the glue.