305 resultados para Equilibri (Economia) -- Models economètrics
Resumo:
Network airlines have been increasingly focusing their operations on hub airports through the exploitation of connecting traffic, allowing them to take advantage of economies of traffic density, which are unequivocal in the airline industry. Less attention has been devoted to airlines? decisions on point-to-point thin routes, which could be served using different aircraft technologies and different business models. This paper examines, both theoretically and empirically, the impact on airlines ?networks of the two major innovations in the airline industry in the last two decades: the regional jet technology and the low-cost business model. We show that, under certain circumstances, direct services on point-to-point thin routes can be viable and thus airlines may be interested in deviating passengers out of the hub.
Resumo:
Network airlines have been increasingly focusing their operations on hub airports through the exploitation of connecting traffic, allowing them to take advantage of economies of traffic density, which are unequivocal in the airline industry. Less attention has been devoted to airlines' decisions on point-to-point thin routes, which could be served using different aircraft technologies and different business models. This paper examines, both theoretically and empirically, the impact on airlines' networks of the two major innovations in the airline industry in the last two decades: the regional jet technology and the low-cost business model. We show that, under certain circumstances, direct services on point-to-point thin routes can be viable and thus airlines may be interested in deviating passengers out of the hub. Keywords: regional jet technology; low-cost business model; point-to-point network; hub-and-spoke network JEL Classi…fication Numbers: L13; L2; L93
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
Solving multi-stage oligopoly models by backward induction can easily become a com- plex task when rms are multi-product and demands are derived from a nested logit frame- work. This paper shows that under the assumption that within-segment rm shares are equal across segments, the analytical expression for equilibrium pro ts can be substantially simpli ed. The size of the error arising when this condition does not hold perfectly is also computed. Through numerical examples, it is shown that the error is rather small in general. Therefore, using this assumption allows to gain analytical tractability in a class of models that has been used to approach relevant policy questions, such as for example rm entry in an industry or the relation between competition and location. The simplifying approach proposed in this paper is aimed at helping improving these type of models for reaching more accurate recommendations.
Resumo:
In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.
Resumo:
This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.
Resumo:
This paper investigates the role of learning by private agents and the central bank (two-sided learning) in a New Keynesian framework in which both sides of the economy have asymmetric and imperfect knowledge about the true data generating process. We assume that all agents employ the data that they observe (which may be distinct for different sets of agents) to form beliefs about unknown aspects of the true model of the economy, use their beliefs to decide on actions, and revise these beliefs through a statistical learning algorithm as new information becomes available. We study the short-run dynamics of our model and derive its policy recommendations, particularly with respect to central bank communications. We demonstrate that two-sided learning can generate substantial increases in volatility and persistence, and alter the behavior of the variables in the model in a signifficant way. Our simulations do not converge to a symmetric rational expectations equilibrium and we highlight one source that invalidates the convergence results of Marcet and Sargent (1989). Finally, we identify a novel aspect of central bank communication in models of learning: communication can be harmful if the central bank's model is substantially mis-specified
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
We propose a method to evaluate cyclical models which does not require knowledge of the DGP and the exact empirical specification of the aggregate decision rules. We derive robust restrictions in a class of models; use some to identify structural shocks and others to evaluate the model or contrast sub-models. The approach has good size and excellent power properties, even in small samples. We show how to examine the validity of a class of models, sort out the relevance of certain frictions, evaluate the importance of an added feature, and indirectly estimate structural parameters.
Resumo:
This paper breaks new ground toward contractual and institutional innovation in models of homeownership, equity building, and mortgage enforcement. Inspired by recent developments in the affordable housing sector and in other types of public financing schemes, this paper suggests extending institutional and financial strategies such as timeand place-based division of property rights, conditional subsidies, and credit mediation to alleviate the systemic risks of mortgage foreclosure. Alongside a for-profit shared equity scheme that would be led by local governments, we also outline a private market shared equity model, one of bootstrapping home buying with purchase options.
Resumo:
Since ethical concerns are calling for more attention within Operational Research, we present three approaches to combine Operational Research models with ethics. Our intention is to clarify the trade-offs faced by the OR community, in particular the tension between the scientific legitimacy of OR models (ethics outside OR models) and the integration of ethics within models (ethics within OR models). Presenting and discussing an approach that combines OR models with the process of OR (ethics beyond OR models), we suggest rigorous ways to express the relation between ethics and OR models. As our work is exploratory, we are trying to avoid a dogmatic attitude and call for further research. We argue that there are interesting avenues for research at the theoretical, methodological and applied levels and that the OR community can contribute to an innovative, constructive and responsible social dialogue about its ethics.
Resumo:
This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.
Resumo:
We analyze the role of commitment in pre-play communication for ensuring efficient evolutionarily stable outcomes in coordination games. All players are a priori identical as they are drawn from the same population. In games where efficient outcomes can be reached by players coordinating on the same action we find commitment to be necessary to enforce efficiency. In games where efficienct outcomes only result from play of different actions, communication without commitment is most effective although efficiency can no longer be guaranteed. Only when there are many messages then inefficient outcomes are negligible as their basins of attraction become very small.