186 resultados para Crime pattern theory
Resumo:
We clarify the meaning of the results of Phys. Rev. E 60, R5013 (1999). We discuss the use and implications of periodic boundary conditions, as opposed to rigid-wall ones. We briefly argue that the solutions of the paper above are physically relevant as part of a more general issue, namely the possible generalization to dynamics, of the microscopic solvability scenario of selection.
Resumo:
The effect of external fluctuations on the formation of spatial patterns is analyzed by means of a stochastic Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes place in the ordering direction (i.e., produces patterns), but its magnitude decreases with that of the noise correlation length. Analytical arguments are presented to explain these facts.
Resumo:
A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
Resumo:
We present the relationship between nonlinear-relaxation-time (NLRT) and quasideterministic approaches to characterize the decay of an unstable state. The universal character of the NLRT is established. The theoretical results are applied to study the dynamical relaxation of the Landau model in one and n variables and also a laser model.
Resumo:
Remarkable differences in the shape of the nematic-smectic-B interface in a quasi-two-dimensional geometry have been experimentally observed in three liquid crystals of very similar molecular structure, i.e., neighboring members of a homologous series. In the thermal equilibrium of the two mesophases a faceted rectanglelike shape was observed with considerably different shape anisotropies for the three homologs. Various morphologies such as dendritic, dendriticlike, and faceted shapes of the rapidly growing smectic-B germ were also observed for the three substances. Experimental results were compared with computer simulations based on the phase field model. The pattern forming behavior of a binary mixture of two homologs was also studied.
Resumo:
We extend the mechanism for noise-induced phase transitions proposed by Ibañes et al. [Phys. Rev. Lett. 87, 020601 (2001)] to pattern formation phenomena. In contrast with known mechanisms for pure noise-induced pattern formation, this mechanism is not driven by a short-time instability amplified by collective effects. The phenomenon is analyzed by means of a modulated mean field approximation and numerical simulations.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Resumo:
We develop a theory of canonical transformations for presymplectic systems, reducing this concept to that of canonical transformations for regular coisotropic canonical systems. In this way we can also link these with the usual canonical transformations for the symplectic reduced phase space. Furthermore, the concept of a generating function arises in a natural way as well as that of gauge group.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Resumo:
The BatalinVilkovisky formalism is studied in the framework of perturbation theory by analyzing the antibracket BecchiRouetStoraTyutin (BRST) cohomology of the proper solution S0. It is concluded that the recursive equations for the complete proper solution S can be solved at any order of perturbation theory. If certain conditions on the classical action and on the gauge generators are imposed the solution can be taken local.
Resumo:
We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
We study steady-state correlation functions of nonlinear stochastic processes driven by external colored noise. We present a methodology that provides explicit expressions of correlation functions approximating simultaneously short- and long-time regimes. The non-Markov nature is reduced to an effective Markovian formulation, and the nonlinearities are treated systematically by means of double expansions in high and low frequencies. We also derive some exact expressions for the coefficients of these expansions for arbitrary noise by means of a generalization of projection-operator techniques.