150 resultados para robust estimation statistics
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
The statistical theory of signal detection and the estimation of its parameters are reviewed and applied to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferometer. The correlation integral and the covariance matrix for all possible static configurations are investigated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity configuration of the detector.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
Photon migration in a turbid medium has been modeled in many different ways. The motivation for such modeling is based on technology that can be used to probe potentially diagnostic optical properties of biological tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics cw measurements made on biological tissue and is directed towards characterizing the depth reached by photons injected at the surface. Our development of the theory uses formalism based on the theory of a continuous-time random walk (CTRW). Formally exact results are given in the Fourier-Laplace domain, which, in turn, are used to generate approximations for parameters of physical interest.
Resumo:
[cat] En aquest treball, es realitza una nova estimació del VAB industrial espanyol a un nivell de desagregació territorial corresponent a les províncies (NUTSIII) i les Comunitats Autònomes (NUTS II). Per assolir aquest objectiu es planteja una nova metodologia d’estimació de les xifres històriques de VAB industrial regional. Front a les aproximacions tradicionals, basades en la utilització de fonts fiscals com a forma d’aproximar la capacitat productiva industrial, en aquest treball s’ofereix una estimació que també es basa en les rendes generades per la producció industrial de les regions. Amb aquest objectiu, es fa servir la metodologia proposada per Geary i Stark (2002) i les millores proposades per Crafts (2005). La utilització d’aquesta metodologia permet elaborar una nova estimació retrospectiva del VAB industrial de les regions espanyoles a diversos talls temporals corresponents al període 1860-1930.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.
Resumo:
A calculation of passage-time statistics is reported for the laser switch-on problem, under the influence of colored noise, when the net gain is continuously swept from below to above threshold. Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are given for small and large correlation times of the noise. The mean first passage time increases with the correlation time of the noise. This effect is more important for fast sweeping than for slow sweeping.
Resumo:
We explore the linkage between equity and commodity markets, focusing in particular on its evolution over time. We document that a country's equity market valuehas significant out-of-sample predictive ability for the future global commodity priceindex for several primary commodity-exporting countries. The out-of-sample predictive ability of the equity market appears around 2000s. The results are robust to usingseveral control variables as well as firm-level equity data. Finally, our results indicatethat exchange rates are a better predictor of commodity prices than equity markets,especially at very short horizons.
Resumo:
Type 1 diabetic patients depend on external insulin delivery to keep their blood glucose within near-normal ranges. In this work, two robust closed-loop controllers for blood glucose regulation are developed to prevent the life-threatening hypoglycemia, as well as to avoid extended hyperglycemia. The proposed controllers are designed by using the sliding mode control technique in a Smith predictor structure. To improve meal disturbance rejection, a simple feedforward controller is added to inject meal-time insulin bolus. Simulations scenarios were used to test the controllers, and showed the controllers ability to maintain the glucose levels within the safe limits in the presence of errors in measurements, modeling and meal estimation
Resumo:
Chromosomal anomalies, like Robertsonian and reciprocal translocations represent a big problem in cattle breeding as their presence induces, in the carrier subjects, a well documented fertility reduction. In cattle reciprocal translocations (RCPs, a chromosome abnormality caused by an exchange of material between nonhomologous chromosomes) are considered rare as to date only 19 reciprocal translocations have been described. In cattle it is common knowledge that the Robertsonian translocations represent the most common cytogenetic anomalies, and this is probably due to the existence of the endemic 1;29 Robertsonian translocation. However, these considerations are based on data obtained using techniques that are unable to identify all reciprocal translocations and thus their frequency is clearly underestimated. The purpose of this work is to provide a first realistic estimate of the impact of RCPs in the cattle population studied, trying to eliminate the factors which have caused an underestimation of their frequency so far. We performed this work using a mathematical as well as a simulation approach and, as biological data, we considered the cytogenetic results obtained in the last 15 years. The results obtained show that only 16% of reciprocal translocations can be detected using simple Giemsa techniques and consequently they could be present in no less than 0,14% of cattle subjects, a frequency five times higher than that shown by de novo Robertsonian translocations. This data is useful to open a debate about the need to introduce a more efficient method to identify RCP in cattle.
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.
Resumo:
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.
Resumo:
Although sources in general nonlinear mixturm arc not separable iising only statistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear (PNL) mixture is separable choosing a suited separating system. Then, a natural approach is based on the estimation of tho separating Bystem parameters by minimizing an indcpendence criterion, like estimated mwce mutual information. This class of methods requires higher (than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, like source temporal correlation or nonstationarity, leads to other source separation Jgw rithms, which are able to separate Gaussian sourra, and can even, for a few of them, works with second-order statistics. Recently, modeling time correlated s011rces by Markov models, we propose vcry efficient algorithms hmed on minimization of the conditional mutual information. Currently, using the prior of temporally correlated sources, we investigate the fesihility of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models and algorithms, and finish with advanced resutts using temporally correlated snu~sm