238 resultados para racines fines
Resumo:
The ac electrical response is studied in thin films composed of well-defined nanometric Co particles embedded in an insulating ZrO2 matrix which tends to coat them, preventing the formation of aggregates. In the dielectric regime, ac transport originates from the competition between interparticle capacitive Cp and tunneling Rt channels, the latter being thermally assisted. This competition yields an absorption phenomenon at a characteristic frequency 1/(RtCp), which is observed in the range 1010 000 Hz. In this way, the effective ac properties mimic the universal response of disordered dielectric materials. Temperature and frequency determine the complexity and nature of the ac electrical paths, which have been successfully modeled by an Rt-Cp network.
Resumo:
Several NdFeB compositionally modulated thin films are studied by using both conversion electron Mossbauer spectra and SQUID (superconducting quantum-interference-device) magnetometry. Both the hyperfine fields and the easy magnetization magnitude are not correlated with the modulation characteristic length (lambda) while the magnetization perpendicular to the thin-film plane decreases as lambda increases. The spectra were recorded at room temperature being the gamma rays perpendicular to the substrate plane. The magnetization measurements were recorded by using a SHE SQUID magnetometer in applied magnetic fields up to 5.5 T and in the temperature range between 1.8 and 30 K.
Resumo:
Conversion electron Mossbauer spectra of composition modulated FeSi thin films have been analysed within the framework of a quasi shape independent model in which the distribution function for the hyperfine fields is assumed to be given by a binomial distribution. Both the hyperfine field and the hyperfine field distribution depend on the modulation characteristic length.
Resumo:
An anomalously long transient is needed to achieve a steady pressurization of a fluid when forced to flow through micronarrowed channels under constant mechanical driving. This phenomenon, known as the "bottleneck effect" is here revisited from a different perspective, by using confined displacements of interfacial fluids. Compared to standard microfluidics, such effect admits in this case a neat quantitative characterization, which reveals intrinsic material characteristics of flowing monolayers and permits to envisage strategies for their controlled micromanipulation.
Resumo:
Experimental quasi-two-dimensional Zn electrodeposits are grown under forced convection conditions. Large-scale effects, with preferential growth towards the impinging flow, together with small-scale roughness suppression effects are evidenced and separately analyzed by using two different radial cell configurations. Interpretations are given in terms of primary concepts concerning current and concentration distributions.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
We observe dendritic patterns in fluid flow in an anisotropic Hele-Shaw cell and measure the tip shapes and trajectories of individual dendritic branches under conditions where the pattern growth appears to be dominated by surface tension anisotropy and also under conditions where kinetic effects appear dominant. In each case, the tip position depends on a power law in the time, but the exponent of this power law can vary significantly among flow realizations. Averaging many growth exponents a yields a =0.640.09 in the surface tension dominated regime and a =0.660.09 in the kinetic regime. Restricting the analysis to realizations when a is very close to 0.6 shows great regularity across pattern regimes in the coefficient of the temporal dependence of the tip trajectory.
Resumo:
The influence of an inert electrolyte (sodium sulfate) on quasi-two-dimensional copper electrodeposition from a nondeaerated aqueous copper sulfate solution has been analyzed. The different morphologies for a fixed concentration of CuSO4 have been classified in a diagram in terms of the applied potential and the inert electrolyte concentration. The main conclusion is the extension of the well-known Ohmic model for the homogeneous growth regime for copper sulfate solutions with small amounts of sodium sulfate. Moreover, we have observed the formation of fingerlike deposits at large applied potential and inert electrolyte concentration values, before hydrogen evolution becomes the main electrode reaction.
Resumo:
In this article we report our systematic studies of the dependence on the sample thickness of the onset parameters of the instability of the nematic-isotropic interface during directional growth and melting, in homeotropic or planar anchoring.
Resumo:
We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (010 %). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases.
Resumo:
Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.
Resumo:
A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.
Resumo:
Electrodeposition experiments conducted in a thin-layer horizontal cell containing a nonbinary aqueous electrolyte prepared with cupric sulfate and sodium sulfate gave rise to fingerlike deposits, a novel and unexpected growth mode in this context. Both the leading instability from which fingers emerge and some distinctive features of their steady evolution are interpreted in terms of a simple model based on the existing theory of fingering in fluids.