157 resultados para Computer networks -- Security measures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a statistical theory to characterize correlations in weighted networks. We define the appropriate metrics quantifying correlations and show that strictly uncorrelated weighted networks do not exist due to the presence of structural constraints. We also introduce an algorithm for generating maximally random weighted networks with arbitrary P(k,s) to be used as null models. The application of our measures to real networks reveals the importance of weights in a correct understanding and modeling of these heterogeneous systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful. Results: In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in Mycoplasma genitalium. Conclusions: To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the Mycoplasma species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectrum is an essential resource for the provision of mobile services. In order to control and delimit its use, governmental agencies set up regulatory policies. Unfortunately, such policies have led to a deficiency of spectrum as only few frequency bands are left unlicensed, and these are used for the majority of new emerging wireless applications. One promising way to alleviate the spectrum shortage problem is adopting a spectrum sharing paradigm in which frequency bands are used opportunistically. Cognitive radio is the key technology to enable this shift of paradigm.Cognitive radio networks are self-organized systems in which devices cooperate to use those spectrum ranges that are not occupied by licensed users. They carry out spectrum sensing in order to detect vacant channels that can be used for communication. Even though spectrum sensing is an active area of research, an important issue remains unsolved: the secure authentication of sensing reports. Not providing security enables the input of false data in the system thus empowering false results. This paper presents a distributed protocol based on wireless physical layer security, symmetric cryptography and one-way functions that allows determining a final sensing decision from multiple sources in a quick and secure way, as well as it preserves users¿ privacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor networks have many applications in monitoring and controlling of environmental properties such as sound, acceleration, vibration and temperature. Due to limitedresources in computation capability, memory and energy, they are vulnerable to many kinds of attacks. The ZigBee specification based on the 802.15.4 standard, defines a set of layers specifically suited to sensor networks. These layers support secure messaging using symmetric cryptographic. This paper presents two different ways for grabbing the cryptographic key in ZigBee: remote attack and physical attack. It also surveys and categorizes some additional attacks which can be performed on ZigBee networks: eavesdropping, spoofing, replay and DoS attacks at different layers. From this analysis, it is shown that some vulnerabilities still in the existing security schema in ZigBee technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive radio networks sense spectrum occupancyand manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secureauthentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and ananalysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the state of the art of secure ad hoc routing protocols and presents SEDYMO, a mechanism to secure a dynamic multihop ad hoc routing protocol. The proposed solution defeats internal and external attacks usinga trustworthiness model based on a distributed certification authority. Digital signatures and hash chains are used to ensure the correctness of the protocol. The protocol is compared with other alternatives in terms of security strength, energy efficiency and time delay. Both computational and transmission costs are considered and it is shown that the secure protocol overhead is not a critical factor compared to the high network interface cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manet security has a lot of open issues. Due to its character-istics, this kind of network needs preventive and corrective protection. Inthis paper, we focus on corrective protection proposing an anomaly IDSmodel for Manet. The design and development of the IDS are consideredin our 3 main stages: normal behavior construction, anomaly detectionand model update. A parametrical mixture model is used for behav-ior modeling from reference data. The associated Bayesian classi¯cationleads to the detection algorithm. MIB variables are used to provide IDSneeded information. Experiments of DoS and scanner attacks validatingthe model are presented as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.