83 resultados para Two-dimensional model
Resumo:
The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport
Resumo:
Most integrodifference models of biological invasions are based on the nonoverlapping-generations approximation. However, the effect of multiple reproduction events overlapping generations on the front speed can be very important especially for species with a long life spam . Only in one-dimensional space has this approximation been relaxed previously, although almost all biological invasions take place in two dimensions. Here we present a model that takes into account the overlapping generations effect or, more generally, the stage structure of the population , and we analyze the main differences with the corresponding nonoverlappinggenerations results
Resumo:
In this paper, we study dynamical aspects of the two-dimensional (2D) gonihedric spin model using both numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a parameter ¿. The ¿=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does not have critical behavior. We have found that allowing for ¿¿0 does not lead to critical behavior either. Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a careful analysis of dynamical observables reveals nonglassy evolution (unlike its 3D counterpart). We find, also in this ¿=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been found.
Resumo:
We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.
Resumo:
The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number is studied by means of a phase-field model. We have compared our numerical results with experiments of the preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the competition process of side-branching development have a greater growth exponent than branches which are stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent dendrites.
Resumo:
We present a very simple but fairly unknown method to obtain exact lower bounds to the ground-state energy of any Hamiltonian that can be partitioned into a sum of sub-Hamiltonians. The technique is applied, in particular, to the two-dimensional spin-1/2 antiferromagnetic Heisenberg model. Reasonably good results are easily obtained and the extension of the method to other systems is straightforward.
Resumo:
Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.
Resumo:
Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation of an ABV model. The dynamics consists of exchanges of particles with a small concentration of vacancies. The influence of changing the vacancy concentration and finite-size effects has been analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous character of the diffusion due to its correlation with local order is responsible for the obtained fast-growth behavior.
Resumo:
The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.
Resumo:
The influence of an inert electrolyte (sodium sulfate) on quasi-two-dimensional copper electrodeposition from a nondeaerated aqueous copper sulfate solution has been analyzed. The different morphologies for a fixed concentration of CuSO4 have been classified in a diagram in terms of the applied potential and the inert electrolyte concentration. The main conclusion is the extension of the well-known Ohmic model for the homogeneous growth regime for copper sulfate solutions with small amounts of sodium sulfate. Moreover, we have observed the formation of fingerlike deposits at large applied potential and inert electrolyte concentration values, before hydrogen evolution becomes the main electrode reaction.
Resumo:
A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.
Resumo:
Report for the scientific sojourn at the Research Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia, from July to September 2006. Within the project, bifurcations of orbit behavior in area-preserving and reversible maps with a homoclinic tangency were studied. Finitely smooth normal forms for such maps near saddle fixed points were constructed and it was shown that they coincide in the main order with the analytical Birkhoff-Moser normal form. Bifurcations of single-round periodic orbits for two-dimensional symplectic maps close to a map with a quadratic homoclinic tangency were studied. The existence of one- and two-parameter cascades of elliptic periodic orbits was proved.
Resumo:
We consider a two dimensional lattice coupled with nearest neighbor interaction potential of power type. The existence of infinite many periodic solutions is shown by using minimax methods.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."