124 resultados para Tantalum oxide films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt Si∕SiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a remote O2 ion source is used for the formation of nano-oxide layers. The oxidation efficiency was measured in CoFe-oxide films, and a decrease of the oxide layer with the pan angle and the oxidation pressure is observed. For the same oxidation pressure, the oxidation efficiency depends on the O2 content in the Ar-O2 plasma. These results were applied in optimizing the fabrication of Al2O3 barrier for tunnel junctions. This method was also used to fabricate junctions with Fe-oxide layers inserted at the Al2O3-CoFe interface. TEM and magnetization data indicate that after anneal at 385°C, a homogeneous ferromagnetic Fe-oxide layer (Fe3O4?) is formed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350Wwhereas the substrate temperature was kept at 160 °C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2×10 -3Vcm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67 % as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure, magnetic response, and dielectric response of the grown epitaxial thin films of the orthorhombic phase of YMnO3 oxide on Nb:SrTiO3 (001) substrates have been measured. We have found that a substrate-induced strain produces an in-plane compression of the YMnO3 unit cell. The magnetization versus temperature curves display a significant zero-field cooling (ZFC)-field cooling hysteresis below the Nel temperature (TN 45 K). The dielectric constant increases gradually (up to 26%) below the TN and mimics the ZFC magnetization curve. We argue that these effects could be a manifestation of magnetoelectric coupling in YMnO3 thin films and that the magnetic structure of YMnO3 can be controlled by substrate selection and/or growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescence spectroscopy has been used to characterize MgO films prepared by rf-sputtering. A clear correlation is found between the appearance of an emission peak centered at approximately 460 nm and the detection of ferromagnetic ordering in the samples. We suggest that cationic vacancies are responsible for the blue-light emission by introducing p states into the electronic band-gap. In accordance with this, our results strongly indicate that cationic vacancies are at the heart of the appearance of long-range magnetic ordering in MgO films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visible up-conversion in ZnO:Er and ZnO:Er:Yb thin films deposited by RF magnetron sputtering under different O2-rich atmospheres has been studied. Conventional photoluminescence (325 nm laser source) and up-conversion (980 nm laser source) have been performed in the films before and after an annealing process at 800 °C. The resulting spectra demonstrate that the thermal treatment, either during or post-deposition, activates optically the Er3+ ions, being the latter process much more efficient. Moreover, the atmosphere during deposition was also found to be an important parameter, as the deposition under O2 flow increases the optical activity of Er+3 ions. In addition, the inclusion of Yb3+ ions into the films has shown an enhancement of the visible up-conversion emission at 660 nm by a factor of 4, which could be associated to either a better energy transfer from the 2F5/2 Yb level to the 4I11/2 Er one, or to the prevention of having Er2O3 clustering in the films.